June  2012, 32(6): 2285-2299. doi: 10.3934/dcds.2012.32.2285

Heat Kernel estimates for some elliptic operators with unbounded diffusion coefficients

1. 

Dipartimento di Matematica “Ennio De Giorgi”, Università del Salento, C.P.193, 73100, Lecce, Italy, Italy

Received  January 2011 Revised  July 2011 Published  February 2012

We prove heat kernel bounds for the operator $(1+|x|^\alpha)\Delta$ in $\mathbb{R}^N$, through Nash inequalities and weighted Hardy inequalities.
Citation: Giorgio Metafune, Chiara Spina. Heat Kernel estimates for some elliptic operators with unbounded diffusion coefficients. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2285-2299. doi: 10.3934/dcds.2012.32.2285
References:
[1]

A. Bazan and W. Neves, The Caffarelli-Kohn-Niremberg's inequality for arbitrary norms,, preprint., (). Google Scholar

[2]

A. Bazan and W. Neves, The Hardy and Caffarelli-Kohn-Niremberg inequalities revised,, preprint, (). Google Scholar

[3]

D. Bakry, F. Bolley, I. Gentil and P. Maheux, Weighted Nash inequalities,, preprint, (). Google Scholar

[4]

E. B. Davies, "One-Parameter Semigroups,", London Mathematical Society Monographs, 15 (1980). Google Scholar

[5]

E. B. Davies, "Heat Kernels and Spectral Theory,", Cambridge Tracts in Mathematics, 92 (1989). Google Scholar

[6]

K.-J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolutions Equations,", Graduate Texts in Mathematics, 194 (2000). Google Scholar

[7]

S. Fornaro and L. Lorenzi, Generation results for elliptic operators with unbounded diffusion coefficients in $L^p$- and $C_b$-spaces,, Discrete and Continuous Dynamical Systems, 18 (2007), 747. Google Scholar

[8]

G. Metafune, E. M. Ouhabaz and D. Pallara, Long time behavior of heat kernels of operators with unbounded drift terms,, J. Math. Anal. Appl., 377 (2011), 170. doi: 10.1016/j.jmaa.2010.10.023. Google Scholar

[9]

G. Metafune and C. Spina, Elliptic operators with unbounded diffusion coefficients in $L^p$ spaces,, Ann. Sc. Norm. Super. Pisa Cl. Sci., (). Google Scholar

[10]

G. Metafune and C. Spina, Kernel estimates for a class of Schrödinger semigroups,, Journal of Evolution Equations, 7 (2007), 719. doi: 10.1007/s00028-007-0338-3. Google Scholar

[11]

G. Metafune, D. Pallara and M. Wacker, Feller semigroups on $\R^N$,, Semigroup Forum, 65 (2002), 159. doi: 10.1007/s002330010129. Google Scholar

[12]

B. Muckenhoupt, Hardy's inequalities with weights,, Studia Math., 44 (1972), 31. Google Scholar

[13]

B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals,, Trans. Amer. Math. Soc., 192 (1974), 261. doi: 10.1090/S0002-9947-1974-0340523-6. Google Scholar

[14]

E. M. Ouhabaz, "Analysis of Heat Equations on Domains,", London Mathematical Society Monographs Series, 31 (2005). Google Scholar

[15]

F.-Y. Wang, Functional inequalities and spectrum estimates: The infinite measure case,, J. Funct. Anal., 194 (2002), 288. doi: 10.1006/jfan.2002.3968. Google Scholar

show all references

References:
[1]

A. Bazan and W. Neves, The Caffarelli-Kohn-Niremberg's inequality for arbitrary norms,, preprint., (). Google Scholar

[2]

A. Bazan and W. Neves, The Hardy and Caffarelli-Kohn-Niremberg inequalities revised,, preprint, (). Google Scholar

[3]

D. Bakry, F. Bolley, I. Gentil and P. Maheux, Weighted Nash inequalities,, preprint, (). Google Scholar

[4]

E. B. Davies, "One-Parameter Semigroups,", London Mathematical Society Monographs, 15 (1980). Google Scholar

[5]

E. B. Davies, "Heat Kernels and Spectral Theory,", Cambridge Tracts in Mathematics, 92 (1989). Google Scholar

[6]

K.-J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolutions Equations,", Graduate Texts in Mathematics, 194 (2000). Google Scholar

[7]

S. Fornaro and L. Lorenzi, Generation results for elliptic operators with unbounded diffusion coefficients in $L^p$- and $C_b$-spaces,, Discrete and Continuous Dynamical Systems, 18 (2007), 747. Google Scholar

[8]

G. Metafune, E. M. Ouhabaz and D. Pallara, Long time behavior of heat kernels of operators with unbounded drift terms,, J. Math. Anal. Appl., 377 (2011), 170. doi: 10.1016/j.jmaa.2010.10.023. Google Scholar

[9]

G. Metafune and C. Spina, Elliptic operators with unbounded diffusion coefficients in $L^p$ spaces,, Ann. Sc. Norm. Super. Pisa Cl. Sci., (). Google Scholar

[10]

G. Metafune and C. Spina, Kernel estimates for a class of Schrödinger semigroups,, Journal of Evolution Equations, 7 (2007), 719. doi: 10.1007/s00028-007-0338-3. Google Scholar

[11]

G. Metafune, D. Pallara and M. Wacker, Feller semigroups on $\R^N$,, Semigroup Forum, 65 (2002), 159. doi: 10.1007/s002330010129. Google Scholar

[12]

B. Muckenhoupt, Hardy's inequalities with weights,, Studia Math., 44 (1972), 31. Google Scholar

[13]

B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals,, Trans. Amer. Math. Soc., 192 (1974), 261. doi: 10.1090/S0002-9947-1974-0340523-6. Google Scholar

[14]

E. M. Ouhabaz, "Analysis of Heat Equations on Domains,", London Mathematical Society Monographs Series, 31 (2005). Google Scholar

[15]

F.-Y. Wang, Functional inequalities and spectrum estimates: The infinite measure case,, J. Funct. Anal., 194 (2002), 288. doi: 10.1006/jfan.2002.3968. Google Scholar

[1]

Sallah Eddine Boutiah, Abdelaziz Rhandi, Cristian Tacelli. Kernel estimates for elliptic operators with unbounded diffusion, drift and potential terms. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 803-817. doi: 10.3934/dcds.2019033

[2]

Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2363-2376. doi: 10.3934/cpaa.2015.14.2363

[3]

N. V. Krylov. Some $L_{p}$-estimates for elliptic and parabolic operators with measurable coefficients. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2073-2090. doi: 10.3934/dcdsb.2012.17.2073

[4]

Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure & Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011

[5]

Xiaona Fan, Li Jiang, Mengsi Li. Homotopy method for solving generalized Nash equilibrium problem with equality and inequality constraints. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1795-1807. doi: 10.3934/jimo.2018123

[6]

Cristina Brändle, Arturo De Pablo. Nonlocal heat equations: Regularizing effect, decay estimates and Nash inequalities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1161-1178. doi: 10.3934/cpaa.2018056

[7]

David Cruz-Uribe, SFO, José María Martell, Carlos Pérez. Sharp weighted estimates for approximating dyadic operators. Electronic Research Announcements, 2010, 17: 12-19. doi: 10.3934/era.2010.17.12

[8]

Farman Mamedov, Sara Monsurrò, Maria Transirico. Potential estimates and applications to elliptic equations. Conference Publications, 2015, 2015 (special) : 793-800. doi: 10.3934/proc.2015.0793

[9]

Mehmet Yavuz, Necati Özdemir. Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 995-1006. doi: 10.3934/dcdss.2020058

[10]

Tuğba Akman Yıldız, Amin Jajarmi, Burak Yıldız, Dumitru Baleanu. New aspects of time fractional optimal control problems within operators with nonsingular kernel. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 407-428. doi: 10.3934/dcdss.2020023

[11]

Moez Kallel, Maher Moakher, Anis Theljani. The Cauchy problem for a nonlinear elliptic equation: Nash-game approach and application to image inpainting. Inverse Problems & Imaging, 2015, 9 (3) : 853-874. doi: 10.3934/ipi.2015.9.853

[12]

François Hamel, Emmanuel Russ, Nikolai Nadirashvili. Comparisons of eigenvalues of second order elliptic operators. Conference Publications, 2007, 2007 (Special) : 477-486. doi: 10.3934/proc.2007.2007.477

[13]

Giorgio Metafune, Chiara Spina, Cristian Tacelli. On a class of elliptic operators with unbounded diffusion coefficients. Evolution Equations & Control Theory, 2014, 3 (4) : 671-680. doi: 10.3934/eect.2014.3.671

[14]

Craig Cowan. Optimal Hardy inequalities for general elliptic operators with improvements. Communications on Pure & Applied Analysis, 2010, 9 (1) : 109-140. doi: 10.3934/cpaa.2010.9.109

[15]

Lijing Xi, Yuying Zhou, Yisheng Huang. A class of quasilinear elliptic hemivariational inequality problems on unbounded domains. Journal of Industrial & Management Optimization, 2014, 10 (3) : 827-837. doi: 10.3934/jimo.2014.10.827

[16]

M. Burak Erdoǧan, William R. Green. Dispersive estimates for matrix Schrödinger operators in dimension two. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4473-4495. doi: 10.3934/dcds.2013.33.4473

[17]

Roberta Bosi, Jean Dolbeault, Maria J. Esteban. Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators. Communications on Pure & Applied Analysis, 2008, 7 (3) : 533-562. doi: 10.3934/cpaa.2008.7.533

[18]

Younghun Hong. Strichartz estimates for $N$-body Schrödinger operators with small potential interactions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5355-5365. doi: 10.3934/dcds.2017233

[19]

Michael Goldberg. Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 109-118. doi: 10.3934/dcds.2011.31.109

[20]

Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]