June  2012, 32(6): 2285-2299. doi: 10.3934/dcds.2012.32.2285

Heat Kernel estimates for some elliptic operators with unbounded diffusion coefficients

1. 

Dipartimento di Matematica “Ennio De Giorgi”, Università del Salento, C.P.193, 73100, Lecce, Italy, Italy

Received  January 2011 Revised  July 2011 Published  February 2012

We prove heat kernel bounds for the operator $(1+|x|^\alpha)\Delta$ in $\mathbb{R}^N$, through Nash inequalities and weighted Hardy inequalities.
Citation: Giorgio Metafune, Chiara Spina. Heat Kernel estimates for some elliptic operators with unbounded diffusion coefficients. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2285-2299. doi: 10.3934/dcds.2012.32.2285
References:
[1]

A. Bazan and W. Neves, The Caffarelli-Kohn-Niremberg's inequality for arbitrary norms,, preprint., (). 

[2]

A. Bazan and W. Neves, The Hardy and Caffarelli-Kohn-Niremberg inequalities revised,, preprint, (). 

[3]

D. Bakry, F. Bolley, I. Gentil and P. Maheux, Weighted Nash inequalities,, preprint, (). 

[4]

E. B. Davies, "One-Parameter Semigroups," London Mathematical Society Monographs, 15, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980.

[5]

E. B. Davies, "Heat Kernels and Spectral Theory," Cambridge Tracts in Mathematics, 92, Cambridge University Press, Cambridge, 1989.

[6]

K.-J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolutions Equations," Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000.

[7]

S. Fornaro and L. Lorenzi, Generation results for elliptic operators with unbounded diffusion coefficients in $L^p$- and $C_b$-spaces, Discrete and Continuous Dynamical Systems, 18 (2007), 747-772.

[8]

G. Metafune, E. M. Ouhabaz and D. Pallara, Long time behavior of heat kernels of operators with unbounded drift terms, J. Math. Anal. Appl., 377 (2011), 170-179. doi: 10.1016/j.jmaa.2010.10.023.

[9]

G. Metafune and C. Spina, Elliptic operators with unbounded diffusion coefficients in $L^p$ spaces,, Ann. Sc. Norm. Super. Pisa Cl. Sci., (). 

[10]

G. Metafune and C. Spina, Kernel estimates for a class of Schrödinger semigroups, Journal of Evolution Equations, 7 (2007), 719-742. doi: 10.1007/s00028-007-0338-3.

[11]

G. Metafune, D. Pallara and M. Wacker, Feller semigroups on $\R^N$, Semigroup Forum, 65 (2002), 159-205. doi: 10.1007/s002330010129.

[12]

B. Muckenhoupt, Hardy's inequalities with weights, Studia Math., 44 (1972), 31-38.

[13]

B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192 (1974), 261-274. doi: 10.1090/S0002-9947-1974-0340523-6.

[14]

E. M. Ouhabaz, "Analysis of Heat Equations on Domains," London Mathematical Society Monographs Series, 31, Princeton University Press, Princeton, NJ, 2005.

[15]

F.-Y. Wang, Functional inequalities and spectrum estimates: The infinite measure case, J. Funct. Anal., 194 (2002), 288-310. doi: 10.1006/jfan.2002.3968.

show all references

References:
[1]

A. Bazan and W. Neves, The Caffarelli-Kohn-Niremberg's inequality for arbitrary norms,, preprint., (). 

[2]

A. Bazan and W. Neves, The Hardy and Caffarelli-Kohn-Niremberg inequalities revised,, preprint, (). 

[3]

D. Bakry, F. Bolley, I. Gentil and P. Maheux, Weighted Nash inequalities,, preprint, (). 

[4]

E. B. Davies, "One-Parameter Semigroups," London Mathematical Society Monographs, 15, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980.

[5]

E. B. Davies, "Heat Kernels and Spectral Theory," Cambridge Tracts in Mathematics, 92, Cambridge University Press, Cambridge, 1989.

[6]

K.-J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolutions Equations," Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000.

[7]

S. Fornaro and L. Lorenzi, Generation results for elliptic operators with unbounded diffusion coefficients in $L^p$- and $C_b$-spaces, Discrete and Continuous Dynamical Systems, 18 (2007), 747-772.

[8]

G. Metafune, E. M. Ouhabaz and D. Pallara, Long time behavior of heat kernels of operators with unbounded drift terms, J. Math. Anal. Appl., 377 (2011), 170-179. doi: 10.1016/j.jmaa.2010.10.023.

[9]

G. Metafune and C. Spina, Elliptic operators with unbounded diffusion coefficients in $L^p$ spaces,, Ann. Sc. Norm. Super. Pisa Cl. Sci., (). 

[10]

G. Metafune and C. Spina, Kernel estimates for a class of Schrödinger semigroups, Journal of Evolution Equations, 7 (2007), 719-742. doi: 10.1007/s00028-007-0338-3.

[11]

G. Metafune, D. Pallara and M. Wacker, Feller semigroups on $\R^N$, Semigroup Forum, 65 (2002), 159-205. doi: 10.1007/s002330010129.

[12]

B. Muckenhoupt, Hardy's inequalities with weights, Studia Math., 44 (1972), 31-38.

[13]

B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192 (1974), 261-274. doi: 10.1090/S0002-9947-1974-0340523-6.

[14]

E. M. Ouhabaz, "Analysis of Heat Equations on Domains," London Mathematical Society Monographs Series, 31, Princeton University Press, Princeton, NJ, 2005.

[15]

F.-Y. Wang, Functional inequalities and spectrum estimates: The infinite measure case, J. Funct. Anal., 194 (2002), 288-310. doi: 10.1006/jfan.2002.3968.

[1]

Sallah Eddine Boutiah, Abdelaziz Rhandi, Cristian Tacelli. Kernel estimates for elliptic operators with unbounded diffusion, drift and potential terms. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 803-817. doi: 10.3934/dcds.2019033

[2]

Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2363-2376. doi: 10.3934/cpaa.2015.14.2363

[3]

N. V. Krylov. Some $L_{p}$-estimates for elliptic and parabolic operators with measurable coefficients. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2073-2090. doi: 10.3934/dcdsb.2012.17.2073

[4]

Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure and Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011

[5]

Xiaona Fan, Li Jiang, Mengsi Li. Homotopy method for solving generalized Nash equilibrium problem with equality and inequality constraints. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1795-1807. doi: 10.3934/jimo.2018123

[6]

Agnid Banerjee, Ramesh Manna. Carleman estimates for a class of variable coefficient degenerate elliptic operators with applications to unique continuation. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5105-5139. doi: 10.3934/dcds.2021070

[7]

Sibei Yang, Dachun Yang, Wenxian Ma. Global regularity estimates for Neumann problems of elliptic operators with coefficients having a BMO anti-symmetric part in NTA domains. Communications on Pure and Applied Analysis, 2022, 21 (3) : 959-998. doi: 10.3934/cpaa.2022006

[8]

Cristina Brändle, Arturo De Pablo. Nonlocal heat equations: Regularizing effect, decay estimates and Nash inequalities. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1161-1178. doi: 10.3934/cpaa.2018056

[9]

Farman Mamedov, Sara Monsurrò, Maria Transirico. Potential estimates and applications to elliptic equations. Conference Publications, 2015, 2015 (special) : 793-800. doi: 10.3934/proc.2015.0793

[10]

David Cruz-Uribe, SFO, José María Martell, Carlos Pérez. Sharp weighted estimates for approximating dyadic operators. Electronic Research Announcements, 2010, 17: 12-19. doi: 10.3934/era.2010.17.12

[11]

Moez Kallel, Maher Moakher, Anis Theljani. The Cauchy problem for a nonlinear elliptic equation: Nash-game approach and application to image inpainting. Inverse Problems and Imaging, 2015, 9 (3) : 853-874. doi: 10.3934/ipi.2015.9.853

[12]

Tuğba Akman Yıldız, Amin Jajarmi, Burak Yıldız, Dumitru Baleanu. New aspects of time fractional optimal control problems within operators with nonsingular kernel. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 407-428. doi: 10.3934/dcdss.2020023

[13]

Mehmet Yavuz, Necati Özdemir. Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 995-1006. doi: 10.3934/dcdss.2020058

[14]

Raziye Mert, Thabet Abdeljawad, Allan Peterson. A Sturm-Liouville approach for continuous and discrete Mittag-Leffler kernel fractional operators. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2417-2434. doi: 10.3934/dcdss.2020171

[15]

Qingsong Gu, Jiaxin Hu, Sze-Man Ngai. Geometry of self-similar measures on intervals with overlaps and applications to sub-Gaussian heat kernel estimates. Communications on Pure and Applied Analysis, 2020, 19 (2) : 641-676. doi: 10.3934/cpaa.2020030

[16]

Lijing Xi, Yuying Zhou, Yisheng Huang. A class of quasilinear elliptic hemivariational inequality problems on unbounded domains. Journal of Industrial and Management Optimization, 2014, 10 (3) : 827-837. doi: 10.3934/jimo.2014.10.827

[17]

François Hamel, Emmanuel Russ, Nikolai Nadirashvili. Comparisons of eigenvalues of second order elliptic operators. Conference Publications, 2007, 2007 (Special) : 477-486. doi: 10.3934/proc.2007.2007.477

[18]

Giorgio Metafune, Chiara Spina, Cristian Tacelli. On a class of elliptic operators with unbounded diffusion coefficients. Evolution Equations and Control Theory, 2014, 3 (4) : 671-680. doi: 10.3934/eect.2014.3.671

[19]

Craig Cowan. Optimal Hardy inequalities for general elliptic operators with improvements. Communications on Pure and Applied Analysis, 2010, 9 (1) : 109-140. doi: 10.3934/cpaa.2010.9.109

[20]

Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (95)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]