-
Previous Article
Well-posedness and stabilization of an Euler-Bernoulli equation with a localized nonlinear dissipation involving the $p$-Laplacian
- DCDS Home
- This Issue
-
Next Article
Heat Kernel estimates for some elliptic operators with unbounded diffusion coefficients
Fredholm's alternative for a class of almost periodic linear systems
1. | Università degli Studi di Milano, Via C. Saldini 50, Milano, I–20133, Italy |
References:
[1] |
W. A. Coppel, "Dichotomies in Stability Theory," Lecture Notes in Mathematics, Vol. 629, Springer-Verlag, Berlin-New York, 1978. |
[2] |
J. Favard, Sur les équations différentielles linéaires à coefficients presque-périodiques, (French) [On the linear differential equations with almost peridoic coefficients], Acta Math., 51 (1928), 31-81.
doi: 10.1007/BF02545660. |
[3] |
J. Favard, Sur certains systèmes différentiels scalaires linéaires et homogénes à coefficients presque-périodiques, (French) [On some scalar linear homogeneous differential systems with almost periodic coefficients], Ann. Mat. Pura Appl. (4), 61 (1963), 297-316. |
[4] |
A. M. Fink, "Almost Periodic Differential Equations," Lecture Notes in Mathematics, Vol. 377, Springer-Verlag, Berlin-New York, 1974. |
[5] |
J. K. Hale, "Ordinary Differential Equations," Pure and Applied Mathematics, Vol. XXI, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1969. |
[6] |
R. A. Johnson, A linear, almost periodic equation with an almost automorphic solution, Proc. Amer. Math. Soc., 82 (1981), 199-205.
doi: 10.1090/S0002-9939-1981-0609651-0. |
[7] |
R. Ortega and M. Tarallo, Almost periodic equations and conditions of Ambrosetti-Prodi type, Math. Proc. Camb. Phil. Soc., 135 (2003), 239-254.
doi: 10.1017/S0305004103006662. |
[8] |
R. Ortega and M. Tarallo, Almost periodic linear differential equations with non-separated solutions, J. Funct. Analysis, 237 (2006), 402-426.
doi: 10.1016/j.jfa.2006.03.027. |
[9] |
K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Differential Equations, 55 (1984), 225-256.
doi: 10.1016/0022-0396(84)90082-2. |
[10] |
K. J. Palmer, Exponential dichotomies and Fredholm operators, Proc. Amer. Mat. Soc., 104 (1988), 149-156.
doi: 10.1090/S0002-9939-1988-0958058-1. |
[11] |
H. M. Rodrigues and M. Silveira, On the relationship between exponential dichotomies and Fredholm alternative, J. Differential Equations, 73 (1988), 78-81.
doi: 10.1016/0022-0396(88)90118-0. |
[12] |
M. Tarallo, Module containment property for linear equations, J. Differential Equations, 224 (2008), 52-60.
doi: 10.1016/j.jde.2007.10.006. |
[13] |
V. V. Žhikov and B. M. Levitan, Favard theory, Uspehi Mat. Nauk, 32 (1977), 123-171, 263. |
show all references
References:
[1] |
W. A. Coppel, "Dichotomies in Stability Theory," Lecture Notes in Mathematics, Vol. 629, Springer-Verlag, Berlin-New York, 1978. |
[2] |
J. Favard, Sur les équations différentielles linéaires à coefficients presque-périodiques, (French) [On the linear differential equations with almost peridoic coefficients], Acta Math., 51 (1928), 31-81.
doi: 10.1007/BF02545660. |
[3] |
J. Favard, Sur certains systèmes différentiels scalaires linéaires et homogénes à coefficients presque-périodiques, (French) [On some scalar linear homogeneous differential systems with almost periodic coefficients], Ann. Mat. Pura Appl. (4), 61 (1963), 297-316. |
[4] |
A. M. Fink, "Almost Periodic Differential Equations," Lecture Notes in Mathematics, Vol. 377, Springer-Verlag, Berlin-New York, 1974. |
[5] |
J. K. Hale, "Ordinary Differential Equations," Pure and Applied Mathematics, Vol. XXI, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1969. |
[6] |
R. A. Johnson, A linear, almost periodic equation with an almost automorphic solution, Proc. Amer. Math. Soc., 82 (1981), 199-205.
doi: 10.1090/S0002-9939-1981-0609651-0. |
[7] |
R. Ortega and M. Tarallo, Almost periodic equations and conditions of Ambrosetti-Prodi type, Math. Proc. Camb. Phil. Soc., 135 (2003), 239-254.
doi: 10.1017/S0305004103006662. |
[8] |
R. Ortega and M. Tarallo, Almost periodic linear differential equations with non-separated solutions, J. Funct. Analysis, 237 (2006), 402-426.
doi: 10.1016/j.jfa.2006.03.027. |
[9] |
K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Differential Equations, 55 (1984), 225-256.
doi: 10.1016/0022-0396(84)90082-2. |
[10] |
K. J. Palmer, Exponential dichotomies and Fredholm operators, Proc. Amer. Mat. Soc., 104 (1988), 149-156.
doi: 10.1090/S0002-9939-1988-0958058-1. |
[11] |
H. M. Rodrigues and M. Silveira, On the relationship between exponential dichotomies and Fredholm alternative, J. Differential Equations, 73 (1988), 78-81.
doi: 10.1016/0022-0396(88)90118-0. |
[12] |
M. Tarallo, Module containment property for linear equations, J. Differential Equations, 224 (2008), 52-60.
doi: 10.1016/j.jde.2007.10.006. |
[13] |
V. V. Žhikov and B. M. Levitan, Favard theory, Uspehi Mat. Nauk, 32 (1977), 123-171, 263. |
[1] |
Juan Campos, Rafael Obaya, Massimo Tarallo. Favard theory and fredholm alternative for disconjugate recurrent second order equations. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1199-1232. doi: 10.3934/cpaa.2017059 |
[2] |
Juan Campos, Rafael Obaya, Massimo Tarallo. Recurrent equations with sign and Fredholm alternative. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 959-977. doi: 10.3934/dcdss.2016036 |
[3] |
Tomás Caraballo, David Cheban. Almost periodic and almost automorphic solutions of linear differential equations. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1857-1882. doi: 10.3934/dcds.2013.33.1857 |
[4] |
Xianhua Huang. Almost periodic and periodic solutions of certain dissipative delay differential equations. Conference Publications, 1998, 1998 (Special) : 301-313. doi: 10.3934/proc.1998.1998.301 |
[5] |
Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure and Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291 |
[6] |
Yong Li, Zhenxin Liu, Wenhe Wang. Almost periodic solutions and stable solutions for stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5927-5944. doi: 10.3934/dcdsb.2019113 |
[7] |
Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39 |
[8] |
Tomás Caraballo, David Cheban. Almost periodic and asymptotically almost periodic solutions of Liénard equations. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 703-717. doi: 10.3934/dcdsb.2011.16.703 |
[9] |
Gaston N'Guerekata. On weak-almost periodic mild solutions of some linear abstract differential equations. Conference Publications, 2003, 2003 (Special) : 672-677. doi: 10.3934/proc.2003.2003.672 |
[10] |
Denis Pennequin. Existence of almost periodic solutions of discrete time equations. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 51-60. doi: 10.3934/dcds.2001.7.51 |
[11] |
Jehad O. Alzabut. A necessary and sufficient condition for the existence of periodic solutions of linear impulsive differential equations with distributed delay. Conference Publications, 2007, 2007 (Special) : 35-43. doi: 10.3934/proc.2007.2007.35 |
[12] |
Rui Zhang, Yong-Kui Chang, G. M. N'Guérékata. Weighted pseudo almost automorphic mild solutions to semilinear integral equations with $S^{p}$-weighted pseudo almost automorphic coefficients. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5525-5537. doi: 10.3934/dcds.2013.33.5525 |
[13] |
Paolo Perfetti. Hamiltonian equations on $\mathbb{T}^\infty$ and almost-periodic solutions. Conference Publications, 2001, 2001 (Special) : 303-309. doi: 10.3934/proc.2001.2001.303 |
[14] |
Yoshihiro Hamaya. Stability properties and existence of almost periodic solutions of volterra difference equations. Conference Publications, 2009, 2009 (Special) : 315-321. doi: 10.3934/proc.2009.2009.315 |
[15] |
Hailong Zhu, Jifeng Chu, Weinian Zhang. Mean-square almost automorphic solutions for stochastic differential equations with hyperbolicity. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1935-1953. doi: 10.3934/dcds.2018078 |
[16] |
M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473 |
[17] |
Yuan Guo, Xiaofei Gao, Desheng Li. Structure of the set of bounded solutions for a class of nonautonomous second order differential equations. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1607-1616. doi: 10.3934/cpaa.2010.9.1607 |
[18] |
Alessandro Fonda, Fabio Zanolin. Bounded solutions of nonlinear second order ordinary differential equations. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 91-98. doi: 10.3934/dcds.1998.4.91 |
[19] |
Peter Giesl, Martin Rasmussen. A note on almost periodic variational equations. Communications on Pure and Applied Analysis, 2011, 10 (3) : 983-994. doi: 10.3934/cpaa.2011.10.983 |
[20] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]