• Previous Article
    Well-posedness and stabilization of an Euler-Bernoulli equation with a localized nonlinear dissipation involving the $p$-Laplacian
  • DCDS Home
  • This Issue
  • Next Article
    Heat Kernel estimates for some elliptic operators with unbounded diffusion coefficients
June  2012, 32(6): 2301-2313. doi: 10.3934/dcds.2012.32.2301

Fredholm's alternative for a class of almost periodic linear systems

1. 

Università degli Studi di Milano, Via C. Saldini 50, Milano, I–20133, Italy

Received  March 2011 Revised  May 2011 Published  February 2012

A Fredholm alternative is proposed for linear almost periodic equations which satisfy the Favard separation condition. The alternative is then tested in the special case, where all the solutions of the homogeneous part of the equation are bounded.
Citation: Massimo Tarallo. Fredholm's alternative for a class of almost periodic linear systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2301-2313. doi: 10.3934/dcds.2012.32.2301
References:
[1]

W. A. Coppel, "Dichotomies in Stability Theory,", Lecture Notes in Mathematics, (1978).   Google Scholar

[2]

J. Favard, Sur les équations différentielles linéaires à coefficients presque-périodiques,, (French) [On the linear differential equations with almost peridoic coefficients], 51 (1928), 31.  doi: 10.1007/BF02545660.  Google Scholar

[3]

J. Favard, Sur certains systèmes différentiels scalaires linéaires et homogénes à coefficients presque-périodiques,, (French) [On some scalar linear homogeneous differential systems with almost periodic coefficients], 61 (1963), 297.   Google Scholar

[4]

A. M. Fink, "Almost Periodic Differential Equations,", Lecture Notes in Mathematics, (1974).   Google Scholar

[5]

J. K. Hale, "Ordinary Differential Equations,", Pure and Applied Mathematics, (1969).   Google Scholar

[6]

R. A. Johnson, A linear, almost periodic equation with an almost automorphic solution,, Proc. Amer. Math. Soc., 82 (1981), 199.  doi: 10.1090/S0002-9939-1981-0609651-0.  Google Scholar

[7]

R. Ortega and M. Tarallo, Almost periodic equations and conditions of Ambrosetti-Prodi type,, Math. Proc. Camb. Phil. Soc., 135 (2003), 239.  doi: 10.1017/S0305004103006662.  Google Scholar

[8]

R. Ortega and M. Tarallo, Almost periodic linear differential equations with non-separated solutions,, J. Funct. Analysis, 237 (2006), 402.  doi: 10.1016/j.jfa.2006.03.027.  Google Scholar

[9]

K. J. Palmer, Exponential dichotomies and transversal homoclinic points,, J. Differential Equations, 55 (1984), 225.  doi: 10.1016/0022-0396(84)90082-2.  Google Scholar

[10]

K. J. Palmer, Exponential dichotomies and Fredholm operators,, Proc. Amer. Mat. Soc., 104 (1988), 149.  doi: 10.1090/S0002-9939-1988-0958058-1.  Google Scholar

[11]

H. M. Rodrigues and M. Silveira, On the relationship between exponential dichotomies and Fredholm alternative,, J. Differential Equations, 73 (1988), 78.  doi: 10.1016/0022-0396(88)90118-0.  Google Scholar

[12]

M. Tarallo, Module containment property for linear equations,, J. Differential Equations, 224 (2008), 52.  doi: 10.1016/j.jde.2007.10.006.  Google Scholar

[13]

V. V. Žhikov and B. M. Levitan, Favard theory,, Uspehi Mat. Nauk, 32 (1977), 123.   Google Scholar

show all references

References:
[1]

W. A. Coppel, "Dichotomies in Stability Theory,", Lecture Notes in Mathematics, (1978).   Google Scholar

[2]

J. Favard, Sur les équations différentielles linéaires à coefficients presque-périodiques,, (French) [On the linear differential equations with almost peridoic coefficients], 51 (1928), 31.  doi: 10.1007/BF02545660.  Google Scholar

[3]

J. Favard, Sur certains systèmes différentiels scalaires linéaires et homogénes à coefficients presque-périodiques,, (French) [On some scalar linear homogeneous differential systems with almost periodic coefficients], 61 (1963), 297.   Google Scholar

[4]

A. M. Fink, "Almost Periodic Differential Equations,", Lecture Notes in Mathematics, (1974).   Google Scholar

[5]

J. K. Hale, "Ordinary Differential Equations,", Pure and Applied Mathematics, (1969).   Google Scholar

[6]

R. A. Johnson, A linear, almost periodic equation with an almost automorphic solution,, Proc. Amer. Math. Soc., 82 (1981), 199.  doi: 10.1090/S0002-9939-1981-0609651-0.  Google Scholar

[7]

R. Ortega and M. Tarallo, Almost periodic equations and conditions of Ambrosetti-Prodi type,, Math. Proc. Camb. Phil. Soc., 135 (2003), 239.  doi: 10.1017/S0305004103006662.  Google Scholar

[8]

R. Ortega and M. Tarallo, Almost periodic linear differential equations with non-separated solutions,, J. Funct. Analysis, 237 (2006), 402.  doi: 10.1016/j.jfa.2006.03.027.  Google Scholar

[9]

K. J. Palmer, Exponential dichotomies and transversal homoclinic points,, J. Differential Equations, 55 (1984), 225.  doi: 10.1016/0022-0396(84)90082-2.  Google Scholar

[10]

K. J. Palmer, Exponential dichotomies and Fredholm operators,, Proc. Amer. Mat. Soc., 104 (1988), 149.  doi: 10.1090/S0002-9939-1988-0958058-1.  Google Scholar

[11]

H. M. Rodrigues and M. Silveira, On the relationship between exponential dichotomies and Fredholm alternative,, J. Differential Equations, 73 (1988), 78.  doi: 10.1016/0022-0396(88)90118-0.  Google Scholar

[12]

M. Tarallo, Module containment property for linear equations,, J. Differential Equations, 224 (2008), 52.  doi: 10.1016/j.jde.2007.10.006.  Google Scholar

[13]

V. V. Žhikov and B. M. Levitan, Favard theory,, Uspehi Mat. Nauk, 32 (1977), 123.   Google Scholar

[1]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[2]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[3]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[4]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[5]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[6]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[7]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[8]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[9]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[10]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[11]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[12]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[13]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[14]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[15]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[16]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[17]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[18]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[19]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[20]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]