July  2012, 32(7): 2375-2402. doi: 10.3934/dcds.2012.32.2375

Measure rigidity for some transcendental meromorphic functions

1. 

Faculty of Mathematics and Information Science, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warszawa, Poland

Received  December 2009 Revised  July 2010 Published  March 2012

We consider hyperbolic meromorphic functions of the following form $f(z)=R\circ\exp(z)$, where $R$ is a non-constant rational function, satisfying so-called rapid derivative growth condition. We study several types of conjugacies in this class and prove a~measure rigidity theorem in the case when $f$ has a logarithmic tract over $\infty$ and under some additional assumptions.
Citation: Agnieszka Badeńska. Measure rigidity for some transcendental meromorphic functions. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2375-2402. doi: 10.3934/dcds.2012.32.2375
References:
[1]

A. Badeńska, Real analyticity of Jacobian of invariant measures for hyperbolic meromorphic functions,, Bull. Lond. Math. Soc., 40 (2008), 1017.  doi: 10.1112/blms/bdn083.  Google Scholar

[2]

K. Barański, B. Karpnińska and A. Zdunik, Hyperbolic dimension of Julia sets of meromorphic maps with logarithmic tracts,, Int. Math. Res. Not. IMRN, 2009 (): 615.   Google Scholar

[3]

W. Bergweiler, Iteration of meromorphic functions,, Bull. Amer. Math. Soc., 29 (1993), 151.  doi: 10.1090/S0273-0979-1993-00432-4.  Google Scholar

[4]

R. L. Devaney and L. Keen, Dynamics of meromorphic maps: Maps with polynomial Schwarzian derivative,, Ann. Sci. École Norm. Sup. (4), 22 (1989), 55.   Google Scholar

[5]

E. Hille, "Analytic Function Theory,", Vol. II, (1962).   Google Scholar

[6]

J. Kotus and M. Urbański, The class of pseudo non-recurrent elliptic functions; geometry and dynamics,, preprint, (2007).   Google Scholar

[7]

J. Kotus and M. Urbański, Fractal measures and ergodic theory of transcendental meromorphic functions,, in, 348 (2008), 251.   Google Scholar

[8]

V. Mayer, Comparing measures and invariant line fields,, Ergodic Theory Dynam. Systems, 22 (2002), 555.   Google Scholar

[9]

V. Mayer and M. Urbański, Geometric thermodynamical formalism and real analyticity for meromorphic functions of finite order,, Ergodic Theory Dynam. Systems, 28 (2008), 915.   Google Scholar

[10]

V. Mayer and M. Urbański, Thermodynamical formalism and multifractal analysis for meromorphic functions of finite order,, Mem. Amer. Math. Soc., 203 (2010).   Google Scholar

[11]

R. Nevanlinna, "Analytic Functions,", Die Grundlehren der mathematischen Wissenschaften, (1970).   Google Scholar

[12]

F. Przytycki and M. Urbański, Rigidity of tame rational functions,, Bull. Polish Acad. Sci. Math., 47 (1999), 163.   Google Scholar

[13]

L. Rempe, Hyperbolic dimension and radial Julia sets of transcendental functions,, Proc. Amer. Math. Soc., 137 (2009), 1411.  doi: 10.1090/S0002-9939-08-09650-0.  Google Scholar

[14]

L. Rempe and S. Van Strien, Absence of line fields and Mané's theorem for nonrecurrent transcendental functions,, Trans. Amer. Math. Soc., 363 (2011), 203.  doi: 10.1090/S0002-9947-2010-05125-6.  Google Scholar

[15]

G. Stallard, The Hausdorff dimension of Julia sets of entire functions. II,, Math. Proc. Cambridge Philos. Soc., 119 (1996), 513.  doi: 10.1017/S0305004100074387.  Google Scholar

[16]

D. Sullivan, Quasiconformal homeomorphisms in dynamics, topology, and geometry,, in, (1987), 1216.   Google Scholar

show all references

References:
[1]

A. Badeńska, Real analyticity of Jacobian of invariant measures for hyperbolic meromorphic functions,, Bull. Lond. Math. Soc., 40 (2008), 1017.  doi: 10.1112/blms/bdn083.  Google Scholar

[2]

K. Barański, B. Karpnińska and A. Zdunik, Hyperbolic dimension of Julia sets of meromorphic maps with logarithmic tracts,, Int. Math. Res. Not. IMRN, 2009 (): 615.   Google Scholar

[3]

W. Bergweiler, Iteration of meromorphic functions,, Bull. Amer. Math. Soc., 29 (1993), 151.  doi: 10.1090/S0273-0979-1993-00432-4.  Google Scholar

[4]

R. L. Devaney and L. Keen, Dynamics of meromorphic maps: Maps with polynomial Schwarzian derivative,, Ann. Sci. École Norm. Sup. (4), 22 (1989), 55.   Google Scholar

[5]

E. Hille, "Analytic Function Theory,", Vol. II, (1962).   Google Scholar

[6]

J. Kotus and M. Urbański, The class of pseudo non-recurrent elliptic functions; geometry and dynamics,, preprint, (2007).   Google Scholar

[7]

J. Kotus and M. Urbański, Fractal measures and ergodic theory of transcendental meromorphic functions,, in, 348 (2008), 251.   Google Scholar

[8]

V. Mayer, Comparing measures and invariant line fields,, Ergodic Theory Dynam. Systems, 22 (2002), 555.   Google Scholar

[9]

V. Mayer and M. Urbański, Geometric thermodynamical formalism and real analyticity for meromorphic functions of finite order,, Ergodic Theory Dynam. Systems, 28 (2008), 915.   Google Scholar

[10]

V. Mayer and M. Urbański, Thermodynamical formalism and multifractal analysis for meromorphic functions of finite order,, Mem. Amer. Math. Soc., 203 (2010).   Google Scholar

[11]

R. Nevanlinna, "Analytic Functions,", Die Grundlehren der mathematischen Wissenschaften, (1970).   Google Scholar

[12]

F. Przytycki and M. Urbański, Rigidity of tame rational functions,, Bull. Polish Acad. Sci. Math., 47 (1999), 163.   Google Scholar

[13]

L. Rempe, Hyperbolic dimension and radial Julia sets of transcendental functions,, Proc. Amer. Math. Soc., 137 (2009), 1411.  doi: 10.1090/S0002-9939-08-09650-0.  Google Scholar

[14]

L. Rempe and S. Van Strien, Absence of line fields and Mané's theorem for nonrecurrent transcendental functions,, Trans. Amer. Math. Soc., 363 (2011), 203.  doi: 10.1090/S0002-9947-2010-05125-6.  Google Scholar

[15]

G. Stallard, The Hausdorff dimension of Julia sets of entire functions. II,, Math. Proc. Cambridge Philos. Soc., 119 (1996), 513.  doi: 10.1017/S0305004100074387.  Google Scholar

[16]

D. Sullivan, Quasiconformal homeomorphisms in dynamics, topology, and geometry,, in, (1987), 1216.   Google Scholar

[1]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[2]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[3]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[4]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[5]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[6]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[7]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[8]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[9]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[10]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[11]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[12]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[13]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[14]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[15]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[16]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[17]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[18]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[19]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[20]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]