July  2012, 32(7): 2417-2436. doi: 10.3934/dcds.2012.32.2417

Continued fractions, Cantor sets, Hausdorff dimension, and transfer operators and their analytic extension

1. 

Mathematics Department, Texas A&M University, College Station, TX 77843-3368, United States

Received  December 2009 Revised  August 2011 Published  March 2012

We survey the dynamical systems side of the theory of continued fractions and touch on some of the frontiers of the subject. Ergodic theory plays a role. The work of Baladi and Vallée is discussed. Power series methods that allow for the computation of various numbers such as the Hausdorff dimension of a continued fraction Cantor set, or the Wirsing constant of a particular continued fraction algorithm, to high accuracy, are also discussed.
Citation: Doug Hensley. Continued fractions, Cantor sets, Hausdorff dimension, and transfer operators and their analytic extension. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2417-2436. doi: 10.3934/dcds.2012.32.2417
References:
[1]

V. Baladi and B. Vallée, Euclidean algorithms are Gaussian,, J. Num. Th., 110 (2005), 331.  doi: 10.1016/j.jnt.2004.08.008.  Google Scholar

[2]

W. Bosma, H. Jager and F. Wiedijk, Some metrical observations on the approximation by continued fractions,, Nederl. Akad. Wetensch. Indag. Math., 45 (1983), 281.   Google Scholar

[3]

J. Bourgain and A. Kontorovich, On Zaremba's Conjecture,, C. R. Math. Acad. Sci. Paris, 349 (2011), 493.   Google Scholar

[4]

P. Flajolet and B. Vallée, On the Gauss-Kuzmin-Wirsing constant,, unpublished note, (1995).   Google Scholar

[5]

H. Heilbronn, On the average length of a class of finite continued fractions,, in, (): 87.   Google Scholar

[6]

D. Hensley, The distribution of badly approximable rationals and continuants with bounded digits. II,, J. Num. Th., 34 (1990), 293.  doi: 10.1016/0022-314X(90)90139-I.  Google Scholar

[7]

D. Hensley, A polynomial time algorithm for the Hausdorff dimension of continued fraction Cantor sets,, J. Num. Th., 58 (1996), 9.  doi: 10.1006/jnth.1996.0058.  Google Scholar

[8]

D. Hensley, The number of steps in the Euclidean algorithm,, J. Num. Th., 49 (1994), 142.  doi: 10.1006/jnth.1994.1088.  Google Scholar

[9]

D. Hensley, "Continued Fractions,'', World Scientific Publishing Co. Pte. Ltd., (2006).  doi: 10.1142/9789812774682.  Google Scholar

[10]

R. Nair, On metric Diophantine approximation and subsequence ergodic theory,, in, 3A (1997), 9.   Google Scholar

[11]

F. Schweiger, "Multidimensional Continued Fractions,", Oxford Science Publications, (2000).   Google Scholar

[12]

E. Wirsing, On the theorem of Gauss-Kusmin-Lévy and a Frobenius-type theorem for function spaces,, V. Acta Arith., 24 (): 507.   Google Scholar

show all references

References:
[1]

V. Baladi and B. Vallée, Euclidean algorithms are Gaussian,, J. Num. Th., 110 (2005), 331.  doi: 10.1016/j.jnt.2004.08.008.  Google Scholar

[2]

W. Bosma, H. Jager and F. Wiedijk, Some metrical observations on the approximation by continued fractions,, Nederl. Akad. Wetensch. Indag. Math., 45 (1983), 281.   Google Scholar

[3]

J. Bourgain and A. Kontorovich, On Zaremba's Conjecture,, C. R. Math. Acad. Sci. Paris, 349 (2011), 493.   Google Scholar

[4]

P. Flajolet and B. Vallée, On the Gauss-Kuzmin-Wirsing constant,, unpublished note, (1995).   Google Scholar

[5]

H. Heilbronn, On the average length of a class of finite continued fractions,, in, (): 87.   Google Scholar

[6]

D. Hensley, The distribution of badly approximable rationals and continuants with bounded digits. II,, J. Num. Th., 34 (1990), 293.  doi: 10.1016/0022-314X(90)90139-I.  Google Scholar

[7]

D. Hensley, A polynomial time algorithm for the Hausdorff dimension of continued fraction Cantor sets,, J. Num. Th., 58 (1996), 9.  doi: 10.1006/jnth.1996.0058.  Google Scholar

[8]

D. Hensley, The number of steps in the Euclidean algorithm,, J. Num. Th., 49 (1994), 142.  doi: 10.1006/jnth.1994.1088.  Google Scholar

[9]

D. Hensley, "Continued Fractions,'', World Scientific Publishing Co. Pte. Ltd., (2006).  doi: 10.1142/9789812774682.  Google Scholar

[10]

R. Nair, On metric Diophantine approximation and subsequence ergodic theory,, in, 3A (1997), 9.   Google Scholar

[11]

F. Schweiger, "Multidimensional Continued Fractions,", Oxford Science Publications, (2000).   Google Scholar

[12]

E. Wirsing, On the theorem of Gauss-Kusmin-Lévy and a Frobenius-type theorem for function spaces,, V. Acta Arith., 24 (): 507.   Google Scholar

[1]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[4]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[5]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[6]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[7]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[8]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[9]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[10]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[11]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[12]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[13]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[14]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[15]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[16]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[17]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[18]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[19]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[20]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (128)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]