Citation: |
[1] |
J. Aaronson, "An Introduction to Infinite Ergodic Theory," Mathematical Surveys and Monographs, 50, American Mathematical Society, Providence, RI, 1997. |
[2] |
J. Aaronson, M. Denker and M. Urbański, Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. AMS, 337 (1993), 495-548.doi: 10.2307/2154231. |
[3] |
N. H. Bingham, C. M. Goldie and J. L. Teugels, "Regular Variation," Encyclopedia of Mathematics and its Applications, 27, Cambridge University Press, Cambridge, 1989. |
[4] |
A. Brocot, Calcul des rouages par approximation, nouvelle méthode, Revue chronométrique, 3 (1981), 186-194. |
[5] |
H. Bruin, M. Nicol and D. Terhesiu, On Young towers associated with infinite measure preserving transformations, Stoch. and Dynamics, 9 (2009), 635-655.doi: 10.1142/S0219493709002816. |
[6] |
H. E. Daniels, Processes generating permutation expansions, Biometrika, 49 (1962), 139-149.doi: 10.1093/biomet/49.1-2.139. |
[7] |
J. L. Doob, "Stochastic Processes," John Wiley & Sons, Inc., New York, Chapman & Hall, Limited, London, 1953. |
[8] |
M. J. Feigenbaum, I. Procaccia and T. Tél, Scaling properties of multifractals as an eigenvalue problem, Phys. Rev. A (3), 39 (1989), 5359-5372.doi: 10.1103/PhysRevA.39.5359. |
[9] |
J. Fiala and P. Kleban, Intervals between Farey fractions in the limit of infinite level, Annales des Sciences Mathematiques du Québec, 34 (2010), 63-71. |
[10] |
D. Hensley, The statistics of the continued fraction digit sum, Pacific Jour. of Math., 192 (2000), 103-120.doi: 10.2140/pjm.2000.192.103. |
[11] |
B. Hu and J. Rudnik, Exact solutions to the Feigenbaum renormalization-group equations for intermittency, Phys. Rev. Lett., 48 (1982), 1645-1648. |
[12] |
M. Kesseböhmer, S. Munday and B. O. Stratmann, Strong renewal theorems and Lyapunov spectra for $\alpha$-Farey and $\alpha$-Lüroth systems, to appear in Ergod. Theory and Dyn. Syst. |
[13] |
M. Kesseböhmer and M. Slassi, Limit laws for distorted critical return time processes in infinite ergodic theory, Stochastics and Dynamics, 7 (2007), 103-121. |
[14] |
M. Kesseböhmer and M. Slassi, A distributional limit law for the continued fraction digit sum, Mathematische Nachrichten, 281 (2008), 1294-1306. |
[15] |
M. Kesseböhmer and M. Slassi, Large deviation asymptotics for continued fraction expansions, Stochastics and Dynamics, 8 (2008), 103-113. |
[16] |
M. Kesseböhmer and B. O. Stratmann, A multifractal formalism for growth rates and applications to geometrically finite Kleinian groups, Ergodic Theory & Dynamical Systems, 24 (2004), 141-170. |
[17] |
M. Kesseböhmer and B. O. Stratmann, Stern-Brocot pressure and multifractal spectra in ergodic theory of numbers, Stochastics and Dynamics, 4 (2004), 77-84.doi: 10.1142/S0219493704000948. |
[18] |
M. Kesseböhmer and B. O. Stratmann, A multifractal analysis for Stern-Brocot intervals, continued fractions and Diophantine growth rates, J. Reine Angew. Math., 605 (2007), 133-163. |
[19] |
A. Ya. Khintchine, "Continued Fractions," Univ. of Chicago Press, Chicago, IL, 1964. |
[20] |
M. Lin, Mixing for Markov operators, Z. Wahrsch. u. V. Geb., 19 (1971), 231-242.doi: 10.1007/BF00534111. |
[21] |
W. Parry, On $\beta$-expansions of real numbers, Acta Math. Acad. Sci. Hung., 11 (1960), 401-416.doi: 10.1007/BF02020954. |
[22] |
W. Parry, Ergodic properties of some permutation processes, Biometrika, 49 (1962), 151-154.doi: 10.2307/2333475. |
[23] |
T. Prellberg and J. Slawny, Maps of intervals with indifferent fixed points: Thermodynamical formalism and phase transition, J. Stat. Phys., 66 (1992), 503-514. |
[24] |
M. A. Stern, Über eine zahlentheoretische Funktion, J. Reine Angew. Math., 55 (1958), 193-220. |
[25] |
M. Thaler, Estimates of the invariant densities of endomorphisms with indifferent fixed points, Israel J. Math., 37 (1980), 303-314. |
[26] |
M. Thaler, Transformations on $[0,1]$ with infinite invariant measures, Israel J. Math., 46 (1983), 67-96.doi: 10.1007/BF02760623. |
[27] |
M. Thaler, The asymptotics of the Perron-Frobenius operator of a class of interval maps preserving infinite measures, Studia Math., 143 (2000), 103-119. |
[28] |
M. Thaler, "Infinite Ergodic Theory," Luminy lecture notes, Marseille, 2001. Available from: http://www.uni-salzburg.at/pls/portal/docs/1/1543201.PDF. |
[29] |
E. Wirsing, On the theorem of Gauss-Kusmin-Lévy and a Frobenius-type theorem for function spaces, V. Acta Arith., 24 (1973/74), 507-528. |