July  2012, 32(7): 2453-2484. doi: 10.3934/dcds.2012.32.2453

The transfer operator for the Hecke triangle groups

1. 

Lower Saxony Professorship, Institute for Theoretical Physics, TU Clausthal, D-38678 Clausthal-Zellerfeld, Germany

2. 

Department of Mathematics and Computer Science, FernUniversität in Hagen, D-58084 Hagen, Germany

3. 

Department of Mathematics, TU Darmstadt, D-64289 Darmstadt, Germany

Received  December 2009 Revised  March 2010 Published  March 2012

In this paper we extend the transfer operator approach to Selberg's zeta function for cofinite Fuchsian groups to the Hecke triangle groups $G_q,\, q=3,4,\ldots$, which are non-arithmetic for $q\not= 3,4,6$. For this we make use of a Poincar\'e map for the geodesic flow on the corresponding Hecke surfaces, which has been constructed in [13], and which is closely related to the natural extension of the generating map for the so-called Hurwitz-Nakada continued fractions. We also derive functional equations for the eigenfunctions of the transfer operator which for eigenvalues $\rho =1$ are expected to be closely related to the period functions of Lewis and Zagier for these Hecke triangle groups.
Citation: Dieter Mayer, Tobias Mühlenbruch, Fredrik Strömberg. The transfer operator for the Hecke triangle groups. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2453-2484. doi: 10.3934/dcds.2012.32.2453
References:
[1]

R. W. Bruggeman, J. Lewis and D. Zagier, Period functions for Maaß wave forms. II: Cohomology, preprint.

[2]

R. W. Bruggeman and T. Mühlenbruch, Eigenfunctions of transfer operators and cohomology, Journal of Number Theory, 129 (2009), 158-181. doi: 10.1016/j.jnt.2008.08.003.

[3]

C.-H. Chang and D. Mayer, Thermodynamic formalism and Selberg's zeta function for modular groups, Regul. Chaotic Dyn., 5 (2000), 281-312. doi: 10.1070/rd2000v005n03ABEH000150.

[4]

C.-H. Chang and D. Mayer, Eigenfunctions of the transfer operators and the period functions for modular groups, in "Dynamical, Spectral, and Arithmetic Zeta Functions" (eds. M. L. Lapidus and M. Van Frankenhuysen) (San Antonio, TX, 1999), Contemp. Math., 290, Amer. Math. Soc., Providence, RI, (2001), 1-40.

[5]

M. Fraczek, D. Mayer and T. Mühlenbruch, A realization of the Hecke algebra on the space of period functions for $\Gamma_0(n)$, J. Reine Angew. Math., 603 (2007), 133-163. doi: 10.1515/CRELLE.2007.014.

[6]

D. Hejhal, "The Selberg Trace Formula for $\PSL(2,\mathbbR)$," Vol. 2, Lecture Notes in Mathematics, 1001, Springer-Verlag, Berlin, 1983.

[7]

J. Hilgert, D. Mayer and H. Movasati, Transfer operators for $\Gamma_0(n)$ and the Hecke operators for the period functions of $\PSL(2,\mathbbZ)$, Math. Proc. Camb. Phil. Soc., 139 (2005), 81-116. doi: 10.1017/S0305004105008480.

[8]

A. Hurwitz, Über eine besondere Art der Kettenbruch-Entwickelung reeller Grössen, Acta Math., 12 (1889), 367-405. doi: 10.1007/BF02391885.

[9]

J. Lewis and D. Zagier, Period functions for Maass wave forms. I., Ann. of Math., 153 (2001), 191-258. doi: 10.2307/2661374.

[10]

D. Mayer, On the thermodynamic formalism for the Gauss map, Comm. Math. Phys., 130 (1990), 311-333. doi: 10.1007/BF02473355.

[11]

D. Mayer, On composition operators on Banach spaces of holomorphic functions, Journal of Functional Analysis, 35 (1980), 191-206. doi: 10.1016/0022-1236(80)90004-X.

[12]

D. Mayer and T. Mühlenbruch, Nearest $\lambda_q$-multiple fractions, in "Spectrum and Dynamics" (eds. D. Jakobson, S. Nonnenmacher and I. Polterovich), CRM Proceedings and Lecture Notes, 52, AMS, Providence, RI, (2010), 147-184. Available from: arXiv:0902.3953.

[13]

D. Mayer and F. Strömberg, Symbolic dynamics for the geodesic flow on Hecke surfaces, Journal of Modern Dynamics, 2 (2008), 581-627. doi: 10.3934/jmd.2008.2.581.

[14]

H. Nakada, Continued fractions, geodesic flows and Ford circles, in "Algorithms, Fractals, and Dynamics" (ed. T. Takahashi) (Okayama/Kyoto, 1992), Plenum, New York, (1995), 179-191.

[15]

R. Phillips and P. Sarnak, On cusp forms for co-finite subgroups of $PSL(2,\mathbbR)$, Invent. Math., 80 (1985), 339-364. doi: 10.1007/BF01388610.

[16]

D. Rosen, A class of continued fractions associated with certain properly discontinuous groups, Duke Math. J., 21 (1954), 549-563. doi: 10.1215/S0012-7094-54-02154-7.

[17]

D. Rosen and T. A. Schmidt, Hecke groups and continued fractions, Bull. Austral. Math. Soc., 46 (1992), 459-474. doi: 10.1017/S0004972700012120.

[18]

D. Ruelle, "Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval," CRM Monograph Series, 4, AMS, Providence, R.I., 1994.

[19]

T. A. Schmidt and M. Sheingorn, Length spectra of the Hecke triangle groups, Mathematische Zeitschrift, 220 (1995), 369-397. doi: 10.1007/BF02572621.

[20]

A. Selberg, Remarks on the distribution of poles of Eisenstein series, in "Festschrift in Honor of I. I. Piatetski-Shapiro on the Occasion of his Sixtieth Birthday," Part II (Ramat Aviv, 1989), Israel Math. Conf. Proc., 3, Weizmann, Jerusalem, (1990), 251-278.

[21]

F. Strömberg, Computation of Selberg's zeta functions on Hecke triangle groupsarXiv:0804.4837.

show all references

References:
[1]

R. W. Bruggeman, J. Lewis and D. Zagier, Period functions for Maaß wave forms. II: Cohomology, preprint.

[2]

R. W. Bruggeman and T. Mühlenbruch, Eigenfunctions of transfer operators and cohomology, Journal of Number Theory, 129 (2009), 158-181. doi: 10.1016/j.jnt.2008.08.003.

[3]

C.-H. Chang and D. Mayer, Thermodynamic formalism and Selberg's zeta function for modular groups, Regul. Chaotic Dyn., 5 (2000), 281-312. doi: 10.1070/rd2000v005n03ABEH000150.

[4]

C.-H. Chang and D. Mayer, Eigenfunctions of the transfer operators and the period functions for modular groups, in "Dynamical, Spectral, and Arithmetic Zeta Functions" (eds. M. L. Lapidus and M. Van Frankenhuysen) (San Antonio, TX, 1999), Contemp. Math., 290, Amer. Math. Soc., Providence, RI, (2001), 1-40.

[5]

M. Fraczek, D. Mayer and T. Mühlenbruch, A realization of the Hecke algebra on the space of period functions for $\Gamma_0(n)$, J. Reine Angew. Math., 603 (2007), 133-163. doi: 10.1515/CRELLE.2007.014.

[6]

D. Hejhal, "The Selberg Trace Formula for $\PSL(2,\mathbbR)$," Vol. 2, Lecture Notes in Mathematics, 1001, Springer-Verlag, Berlin, 1983.

[7]

J. Hilgert, D. Mayer and H. Movasati, Transfer operators for $\Gamma_0(n)$ and the Hecke operators for the period functions of $\PSL(2,\mathbbZ)$, Math. Proc. Camb. Phil. Soc., 139 (2005), 81-116. doi: 10.1017/S0305004105008480.

[8]

A. Hurwitz, Über eine besondere Art der Kettenbruch-Entwickelung reeller Grössen, Acta Math., 12 (1889), 367-405. doi: 10.1007/BF02391885.

[9]

J. Lewis and D. Zagier, Period functions for Maass wave forms. I., Ann. of Math., 153 (2001), 191-258. doi: 10.2307/2661374.

[10]

D. Mayer, On the thermodynamic formalism for the Gauss map, Comm. Math. Phys., 130 (1990), 311-333. doi: 10.1007/BF02473355.

[11]

D. Mayer, On composition operators on Banach spaces of holomorphic functions, Journal of Functional Analysis, 35 (1980), 191-206. doi: 10.1016/0022-1236(80)90004-X.

[12]

D. Mayer and T. Mühlenbruch, Nearest $\lambda_q$-multiple fractions, in "Spectrum and Dynamics" (eds. D. Jakobson, S. Nonnenmacher and I. Polterovich), CRM Proceedings and Lecture Notes, 52, AMS, Providence, RI, (2010), 147-184. Available from: arXiv:0902.3953.

[13]

D. Mayer and F. Strömberg, Symbolic dynamics for the geodesic flow on Hecke surfaces, Journal of Modern Dynamics, 2 (2008), 581-627. doi: 10.3934/jmd.2008.2.581.

[14]

H. Nakada, Continued fractions, geodesic flows and Ford circles, in "Algorithms, Fractals, and Dynamics" (ed. T. Takahashi) (Okayama/Kyoto, 1992), Plenum, New York, (1995), 179-191.

[15]

R. Phillips and P. Sarnak, On cusp forms for co-finite subgroups of $PSL(2,\mathbbR)$, Invent. Math., 80 (1985), 339-364. doi: 10.1007/BF01388610.

[16]

D. Rosen, A class of continued fractions associated with certain properly discontinuous groups, Duke Math. J., 21 (1954), 549-563. doi: 10.1215/S0012-7094-54-02154-7.

[17]

D. Rosen and T. A. Schmidt, Hecke groups and continued fractions, Bull. Austral. Math. Soc., 46 (1992), 459-474. doi: 10.1017/S0004972700012120.

[18]

D. Ruelle, "Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval," CRM Monograph Series, 4, AMS, Providence, R.I., 1994.

[19]

T. A. Schmidt and M. Sheingorn, Length spectra of the Hecke triangle groups, Mathematische Zeitschrift, 220 (1995), 369-397. doi: 10.1007/BF02572621.

[20]

A. Selberg, Remarks on the distribution of poles of Eisenstein series, in "Festschrift in Honor of I. I. Piatetski-Shapiro on the Occasion of his Sixtieth Birthday," Part II (Ramat Aviv, 1989), Israel Math. Conf. Proc., 3, Weizmann, Jerusalem, (1990), 251-278.

[21]

F. Strömberg, Computation of Selberg's zeta functions on Hecke triangle groupsarXiv:0804.4837.

[1]

Élise Janvresse, Benoît Rittaud, Thierry de la Rue. Dynamics of $\lambda$-continued fractions and $\beta$-shifts. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1477-1498. doi: 10.3934/dcds.2013.33.1477

[2]

Frédéric Naud, Anke Pohl, Louis Soares. Fractal Weyl bounds and Hecke triangle groups. Electronic Research Announcements, 2019, 26: 24-35. doi: 10.3934/era.2019.26.003

[3]

Doug Hensley. Continued fractions, Cantor sets, Hausdorff dimension, and transfer operators and their analytic extension. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2417-2436. doi: 10.3934/dcds.2012.32.2417

[4]

Laura Luzzi, Stefano Marmi. On the entropy of Japanese continued fractions. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 673-711. doi: 10.3934/dcds.2008.20.673

[5]

Pierre Arnoux, Thomas A. Schmidt. Commensurable continued fractions. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4389-4418. doi: 10.3934/dcds.2014.34.4389

[6]

Katsukuni Nakagawa. Compactness of transfer operators and spectral representation of Ruelle zeta functions for super-continuous functions. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6331-6350. doi: 10.3934/dcds.2020282

[7]

Kanji Inui, Hikaru Okada, Hiroki Sumi. The Hausdorff dimension function of the family of conformal iterated function systems of generalized complex continued fractions. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 753-766. doi: 10.3934/dcds.2020060

[8]

J. William Hoffman. Remarks on the zeta function of a graph. Conference Publications, 2003, 2003 (Special) : 413-422. doi: 10.3934/proc.2003.2003.413

[9]

Claudio Bonanno, Carlo Carminati, Stefano Isola, Giulio Tiozzo. Dynamics of continued fractions and kneading sequences of unimodal maps. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1313-1332. doi: 10.3934/dcds.2013.33.1313

[10]

Frédéric Naud. The Ruelle spectrum of generic transfer operators. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2521-2531. doi: 10.3934/dcds.2012.32.2521

[11]

Lulu Fang, Min Wu. Hausdorff dimension of certain sets arising in Engel continued fractions. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2375-2393. doi: 10.3934/dcds.2018098

[12]

Marc Kessböhmer, Bernd O. Stratmann. On the asymptotic behaviour of the Lebesgue measure of sum-level sets for continued fractions. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2437-2451. doi: 10.3934/dcds.2012.32.2437

[13]

Patricia Domínguez, Peter Makienko, Guillermo Sienra. Ruelle operator and transcendental entire maps. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 773-789. doi: 10.3934/dcds.2005.12.773

[14]

Vesselin Petkov, Luchezar Stoyanov. Ruelle transfer operators with two complex parameters and applications. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6413-6451. doi: 10.3934/dcds.2016077

[15]

Harman Kaur, Meenakshi Rana. Congruences for sixth order mock theta functions $ \lambda(q) $ and $ \rho(q) $. Electronic Research Archive, 2021, 29 (6) : 4257-4268. doi: 10.3934/era.2021084

[16]

Leandro Cioletti, Artur O. Lopes, Manuel Stadlbauer. Ruelle operator for continuous potentials and DLR-Gibbs measures. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4625-4652. doi: 10.3934/dcds.2020195

[17]

Leandro Cioletti, Artur O. Lopes. Interactions, specifications, DLR probabilities and the Ruelle operator in the one-dimensional lattice. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6139-6152. doi: 10.3934/dcds.2017264

[18]

Mark F. Demers, Hong-Kun Zhang. Spectral analysis of the transfer operator for the Lorentz gas. Journal of Modern Dynamics, 2011, 5 (4) : 665-709. doi: 10.3934/jmd.2011.5.665

[19]

Huangsheng Yu, Feifei Xie, Dianhua Wu, Hengming Zhao. Further results on optimal $ (n, \{3, 4, 5\}, \Lambda_a, 1, Q) $-OOCs. Advances in Mathematics of Communications, 2019, 13 (2) : 297-312. doi: 10.3934/amc.2019020

[20]

Yijing Sun. Estimates for extremal values of $-\Delta u= h(x) u^{q}+\lambda W(x) u^{p}$. Communications on Pure and Applied Analysis, 2010, 9 (3) : 751-760. doi: 10.3934/cpaa.2010.9.751

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (155)
  • HTML views (0)
  • Cited by (15)

[Back to Top]