July  2012, 32(7): 2503-2520. doi: 10.3934/dcds.2012.32.2503

On Hausdorff dimension and cusp excursions for Fuchsian groups

1. 

Fachbereich 3 - Mathematik Universitt Bremen, Postfach 33 04 40, Bibliothekstrae 1, 28359 Bremen, Germany

Received  May 2011 Revised  June 2011 Published  March 2012

Certain subsets of limit sets of geometrically finite Fuchsian groups with parabolic elements are considered. It is known that Jarník limit sets determine a "weak multifractal spectrum" of the Patterson measure in this situation. This paper will describe a natural generalisation of these sets, called strict Jarník limit sets, and show how these give rise to another weak multifractal spectrum. Number-theoretical interpretations of these results in terms of continued fractions will also be given.
Citation: Sara Munday. On Hausdorff dimension and cusp excursions for Fuchsian groups. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2503-2520. doi: 10.3934/dcds.2012.32.2503
References:
[1]

A. F. Beardon, The exponent of convergence of Poincaré series,, Proc. London Math. Soc. (3), 18 (1968), 461.   Google Scholar

[2]

A. F. Beardon, "The Geometry of Discrete Groups,'', Graduate Texts in Mathematics, 91 (1983).   Google Scholar

[3]

A. F. Beardon and B. Maskit, Limit points of Kleinian groups and finite sided fundamental polyhedra,, Acta Math., 132 (1974), 1.  doi: 10.1007/BF02392106.  Google Scholar

[4]

A. S. Besicovitch, Sets of fractional dimension (IV): On rational approximation to real numbers,, Jour. London Math. Soc., 9 (1934), 126.  doi: 10.1112/jlms/s1-9.2.126.  Google Scholar

[5]

P. Billingsley, "Convergence of Probability Measures,'', Second edition, (1999).   Google Scholar

[6]

C. J. Bishop and P. W. Jones, Hausdorff dimension and Kleinian groups,, Acta Math., 179 (1997), 1.  doi: 10.1007/BF02392718.  Google Scholar

[7]

K. Falconer, "Fractal Geometry,'', Mathematical Foundations and Applications, (1990).   Google Scholar

[8]

A.-H. Fan, L.-M. Liao, B.-W. Wang and J. Wu, On Khintchine exponents and Lyapunov exponents of continued fractions,, Ergod. Th. Dynam. Sys., 29 (2009), 73.  doi: 10.1017/S0143385708000138.  Google Scholar

[9]

O. Frostman, Potential d'équilibre et capacité des ensembles avec quelque applications à la théorie des fonctions,, Meddel. Lunds Univ. Math. Sem., 3 (1935), 1.   Google Scholar

[10]

I. J. Good, The fractional dimensional theory of continued fractions,, Proc. Cambridge Phil. Soc., 37 (1941), 199.  doi: 10.1017/S030500410002171X.  Google Scholar

[11]

R. Hill and S. L. Velani, The Jarník-Besicovitch theorem for geometrically finite Kleinian groups,, Proc. London Math. Soc. (3), 77 (1998), 524.  doi: 10.1112/S0024611598000550.  Google Scholar

[12]

J. Jaerisch and M. Kesseböhmer, The arithmetic-geometric scaling spectrum for continued fractions,, Ark. Mat., 48 (2010), 335.  doi: 10.1007/s11512-009-0102-8.  Google Scholar

[13]

V. Jarník, Diophantische approximationen and Hausdorff mass,, Mathematicheskii Sbornik, 36 (1929), 371.   Google Scholar

[14]

T. Jordan and M. Rams, Increasing digits subsystems of infinite iterated function systems,, Proc. of the Amer. Math. Soc., 140 (2011), 1267.  doi: 10.1090/S0002-9939-2011-10969-9.  Google Scholar

[15]

A. Ya. Khinchin, "Continued Fractions,'', The University of Chicago Press, (1964).   Google Scholar

[16]

P. J. Nicholls, "The Ergodic Theory of Discrete Groups,'', Springer-Verlag, (1983).   Google Scholar

[17]

S. J. Patterson, The limit set of a Fuchsian group,, Acta Math., 136 (1976), 241.  doi: 10.1007/BF02392046.  Google Scholar

[18]

C. Series, The modular surface and continued fractions,, J. London Math. Soc. (2), 31 (1985), 69.  doi: 10.1112/jlms/s2-31.1.69.  Google Scholar

[19]

B. O. Stratmann, Fractal dimensions for Jarník limit sets of geometrically finite Kleinian groups; the semi-classical approach,, Ark. Mat., 33 (1995), 385.  doi: 10.1007/BF02559716.  Google Scholar

[20]

B. O. Stratmann, Weak singularity spectra of the Patterson measure for geometrically finite Kleinian groups with parabolic elements,, Michigan Math. J., 46 (1999), 573.   Google Scholar

[21]

B. O. Stratmann, The exponent of convergence of Kleinian groups; on a theorem of Bishop and Jones,, in, 57 (2004), 93.   Google Scholar

[22]

B. O. Stratmann and S. Velani, The Patterson measure for geometrically finite groups with parabolic elements, new and old,, Proc. London Math. Soc. (3), 71 (1995), 197.  doi: 10.1112/plms/s3-71.1.197.  Google Scholar

[23]

D. Sullivan, The density at infinity of a discrete group of hyperbolic motions,, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 171.   Google Scholar

[24]

D. Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups,, Acta Math., 153 (1984), 259.  doi: 10.1007/BF02392379.  Google Scholar

show all references

References:
[1]

A. F. Beardon, The exponent of convergence of Poincaré series,, Proc. London Math. Soc. (3), 18 (1968), 461.   Google Scholar

[2]

A. F. Beardon, "The Geometry of Discrete Groups,'', Graduate Texts in Mathematics, 91 (1983).   Google Scholar

[3]

A. F. Beardon and B. Maskit, Limit points of Kleinian groups and finite sided fundamental polyhedra,, Acta Math., 132 (1974), 1.  doi: 10.1007/BF02392106.  Google Scholar

[4]

A. S. Besicovitch, Sets of fractional dimension (IV): On rational approximation to real numbers,, Jour. London Math. Soc., 9 (1934), 126.  doi: 10.1112/jlms/s1-9.2.126.  Google Scholar

[5]

P. Billingsley, "Convergence of Probability Measures,'', Second edition, (1999).   Google Scholar

[6]

C. J. Bishop and P. W. Jones, Hausdorff dimension and Kleinian groups,, Acta Math., 179 (1997), 1.  doi: 10.1007/BF02392718.  Google Scholar

[7]

K. Falconer, "Fractal Geometry,'', Mathematical Foundations and Applications, (1990).   Google Scholar

[8]

A.-H. Fan, L.-M. Liao, B.-W. Wang and J. Wu, On Khintchine exponents and Lyapunov exponents of continued fractions,, Ergod. Th. Dynam. Sys., 29 (2009), 73.  doi: 10.1017/S0143385708000138.  Google Scholar

[9]

O. Frostman, Potential d'équilibre et capacité des ensembles avec quelque applications à la théorie des fonctions,, Meddel. Lunds Univ. Math. Sem., 3 (1935), 1.   Google Scholar

[10]

I. J. Good, The fractional dimensional theory of continued fractions,, Proc. Cambridge Phil. Soc., 37 (1941), 199.  doi: 10.1017/S030500410002171X.  Google Scholar

[11]

R. Hill and S. L. Velani, The Jarník-Besicovitch theorem for geometrically finite Kleinian groups,, Proc. London Math. Soc. (3), 77 (1998), 524.  doi: 10.1112/S0024611598000550.  Google Scholar

[12]

J. Jaerisch and M. Kesseböhmer, The arithmetic-geometric scaling spectrum for continued fractions,, Ark. Mat., 48 (2010), 335.  doi: 10.1007/s11512-009-0102-8.  Google Scholar

[13]

V. Jarník, Diophantische approximationen and Hausdorff mass,, Mathematicheskii Sbornik, 36 (1929), 371.   Google Scholar

[14]

T. Jordan and M. Rams, Increasing digits subsystems of infinite iterated function systems,, Proc. of the Amer. Math. Soc., 140 (2011), 1267.  doi: 10.1090/S0002-9939-2011-10969-9.  Google Scholar

[15]

A. Ya. Khinchin, "Continued Fractions,'', The University of Chicago Press, (1964).   Google Scholar

[16]

P. J. Nicholls, "The Ergodic Theory of Discrete Groups,'', Springer-Verlag, (1983).   Google Scholar

[17]

S. J. Patterson, The limit set of a Fuchsian group,, Acta Math., 136 (1976), 241.  doi: 10.1007/BF02392046.  Google Scholar

[18]

C. Series, The modular surface and continued fractions,, J. London Math. Soc. (2), 31 (1985), 69.  doi: 10.1112/jlms/s2-31.1.69.  Google Scholar

[19]

B. O. Stratmann, Fractal dimensions for Jarník limit sets of geometrically finite Kleinian groups; the semi-classical approach,, Ark. Mat., 33 (1995), 385.  doi: 10.1007/BF02559716.  Google Scholar

[20]

B. O. Stratmann, Weak singularity spectra of the Patterson measure for geometrically finite Kleinian groups with parabolic elements,, Michigan Math. J., 46 (1999), 573.   Google Scholar

[21]

B. O. Stratmann, The exponent of convergence of Kleinian groups; on a theorem of Bishop and Jones,, in, 57 (2004), 93.   Google Scholar

[22]

B. O. Stratmann and S. Velani, The Patterson measure for geometrically finite groups with parabolic elements, new and old,, Proc. London Math. Soc. (3), 71 (1995), 197.  doi: 10.1112/plms/s3-71.1.197.  Google Scholar

[23]

D. Sullivan, The density at infinity of a discrete group of hyperbolic motions,, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 171.   Google Scholar

[24]

D. Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups,, Acta Math., 153 (1984), 259.  doi: 10.1007/BF02392379.  Google Scholar

[1]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[2]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[3]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[4]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[5]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[6]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]