July  2012, 32(7): 2521-2531. doi: 10.3934/dcds.2012.32.2521

The Ruelle spectrum of generic transfer operators

1. 

Université d’Avignon, Laboratoire d’Analyse non linéraire et Géométrie, 33, rue Louis Pasteur, 84000, France

Received  December 2009 Revised  July 2010 Published  March 2012

We define a natural space of transfer operators related to holomorphic contraction systems. We show that the classical upper bounds on the Ruelle eigenvalue sequence are optimal for a dense set of transfer operators. A similar statement is derived for Perron-Frobenius operators related to uniformly expanding piecewise real analytic interval maps. The proof is based on potential theory.
Citation: Frédéric Naud. The Ruelle spectrum of generic transfer operators. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2521-2531. doi: 10.3934/dcds.2012.32.2521
References:
[1]

Viviane Baladi, "Positive Transfer Operators and Decay of Correlations," Advanced Series in Nonlinear Dynamics, 16,, World Scientific Publishing Co, (2000).   Google Scholar

[2]

Oscar F. Bandtlow and Oliver Jenkinson, Explicit eigenvalue estimates for transfer operators acting on spaces of holomorphic functions,, Adv. Math., 218 (2008), 902.  doi: 10.1016/j.aim.2008.02.005.  Google Scholar

[3]

Oscar F. Bandtlow and Oliver Jenkinson, On the Ruelle eigenvalue sequence,, Ergodic Theory Dynam. Systems, 28 (2008), 1701.  doi: 10.1017/S0143385708000059.  Google Scholar

[4]

T. Christiansen, Several complex variables and the distribution of resonances in potential scattering,, Comm. Math. Phys., 259 (2005), 711.  doi: 10.1007/s00220-005-1381-y.  Google Scholar

[5]

T. J. Christiansen, Several complex variables and the order of growth of the resonance counting function in Euclidean scattering,, Int. Math. Res. Not., 2006 (4316).   Google Scholar

[6]

David Fried, The zeta functions of Ruelle and Selberg. I,, Ann. Sci. École Norm. Sup. (4), 19 (1986), 491.   Google Scholar

[7]

Israel Gohberg, Seymour Goldberg and Nahum Krupnik, "Traces and Determinants of Linear Operators," Operator Theory: Advances and Applications, 116,, Birkhäuser Verlag, (2000).   Google Scholar

[8]

Pierre Lelong and Lawrence Gruman, "Entire Functions of Several Complex Variables," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 282,, Springer-Verlag, (1986).   Google Scholar

[9]

Thomas Ransford, "Potential Theory in the Complex Plane," London Mathematical Society Student Texts, 28,, Cambridge University Press, (1995).   Google Scholar

[10]

David Ruelle, Zeta-functions for expanding maps and Anosov flows,, Invent. Math., 34 (1976), 231.   Google Scholar

show all references

References:
[1]

Viviane Baladi, "Positive Transfer Operators and Decay of Correlations," Advanced Series in Nonlinear Dynamics, 16,, World Scientific Publishing Co, (2000).   Google Scholar

[2]

Oscar F. Bandtlow and Oliver Jenkinson, Explicit eigenvalue estimates for transfer operators acting on spaces of holomorphic functions,, Adv. Math., 218 (2008), 902.  doi: 10.1016/j.aim.2008.02.005.  Google Scholar

[3]

Oscar F. Bandtlow and Oliver Jenkinson, On the Ruelle eigenvalue sequence,, Ergodic Theory Dynam. Systems, 28 (2008), 1701.  doi: 10.1017/S0143385708000059.  Google Scholar

[4]

T. Christiansen, Several complex variables and the distribution of resonances in potential scattering,, Comm. Math. Phys., 259 (2005), 711.  doi: 10.1007/s00220-005-1381-y.  Google Scholar

[5]

T. J. Christiansen, Several complex variables and the order of growth of the resonance counting function in Euclidean scattering,, Int. Math. Res. Not., 2006 (4316).   Google Scholar

[6]

David Fried, The zeta functions of Ruelle and Selberg. I,, Ann. Sci. École Norm. Sup. (4), 19 (1986), 491.   Google Scholar

[7]

Israel Gohberg, Seymour Goldberg and Nahum Krupnik, "Traces and Determinants of Linear Operators," Operator Theory: Advances and Applications, 116,, Birkhäuser Verlag, (2000).   Google Scholar

[8]

Pierre Lelong and Lawrence Gruman, "Entire Functions of Several Complex Variables," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 282,, Springer-Verlag, (1986).   Google Scholar

[9]

Thomas Ransford, "Potential Theory in the Complex Plane," London Mathematical Society Student Texts, 28,, Cambridge University Press, (1995).   Google Scholar

[10]

David Ruelle, Zeta-functions for expanding maps and Anosov flows,, Invent. Math., 34 (1976), 231.   Google Scholar

[1]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[2]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[3]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[4]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[5]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[6]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[7]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[8]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[9]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[10]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[11]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[12]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[13]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[14]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[15]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[16]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[17]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[18]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[19]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[20]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]