July  2012, 32(7): 2533-2551. doi: 10.3934/dcds.2012.32.2533

A new variation of Bowen's formula for graph directed Markov systems

1. 

Glendon College, York University, 2275 Bayview Avenue, Toronto, M4N 3M6, Canada

Received  December 2009 Revised  May 2010 Published  March 2012

We introduce a new variation of Bowen's formula for conformal graph directed Markov systems (a.k.a. CGDMSs). This new variation applies to a very large collection of non-irreducible systems and is shown to coincide with the well-known Bowen's formula that holds for all finite or finitely irreducible CGDMSs (cf. [2], [4] and [1]). We further show that the original version of Bowen's formula may not hold even for non-irreducible CGDMSs whose components are IFSs, justifying thereby the introduction of a new variation. This answers two questions that were raised by Ghenciu and Mauldin in [1]. Their third question is also %partially tackled. addressed. Indeed, we prove that Ghenciu and Mauldin's conjecture about the finiteness parameters of the partition functions of the pressure is false even within the class of irreducible systems.
Citation: Mario Roy. A new variation of Bowen's formula for graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2533-2551. doi: 10.3934/dcds.2012.32.2533
References:
[1]

A. Ghenciu and R. D. Mauldin, Conformal graph directed Markov systems,, preprint, ().   Google Scholar

[2]

R. D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems,, Proc. London Math. Soc. (3), 73 (1996), 105.  doi: 10.1112/plms/s3-73.1.105.  Google Scholar

[3]

R. D. Mauldin and M. Urbański, Conformal iterated function systems with applications to the geometry of continued fractions,, Trans. Amer. Math. Soc., 351 (1999), 4995.  doi: 10.1090/S0002-9947-99-02268-0.  Google Scholar

[4]

R. D. Mauldin and M. Urbański, "Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets,", Cambridge Tracts in Mathematics, 148 (2003).   Google Scholar

[5]

R. D. Mauldin and S. C. Williams, Hausdorff dimension in graph directed constructions,, Trans. Amer. Math. Soc., 309 (1988), 811.  doi: 10.1090/S0002-9947-1988-0961615-4.  Google Scholar

show all references

References:
[1]

A. Ghenciu and R. D. Mauldin, Conformal graph directed Markov systems,, preprint, ().   Google Scholar

[2]

R. D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems,, Proc. London Math. Soc. (3), 73 (1996), 105.  doi: 10.1112/plms/s3-73.1.105.  Google Scholar

[3]

R. D. Mauldin and M. Urbański, Conformal iterated function systems with applications to the geometry of continued fractions,, Trans. Amer. Math. Soc., 351 (1999), 4995.  doi: 10.1090/S0002-9947-99-02268-0.  Google Scholar

[4]

R. D. Mauldin and M. Urbański, "Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets,", Cambridge Tracts in Mathematics, 148 (2003).   Google Scholar

[5]

R. D. Mauldin and S. C. Williams, Hausdorff dimension in graph directed constructions,, Trans. Amer. Math. Soc., 309 (1988), 811.  doi: 10.1090/S0002-9947-1988-0961615-4.  Google Scholar

[1]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[2]

Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124

[3]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[4]

Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021018

[5]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, 2021, 20 (2) : 623-650. doi: 10.3934/cpaa.2020283

[6]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[7]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[8]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[9]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[10]

Dandan Cheng, Qian Hao, Zhiming Li. Scale pressure for amenable group actions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021008

[11]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[12]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[13]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[14]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[15]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[16]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[17]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[18]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[19]

Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020364

[20]

The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]