-
Previous Article
On dimensions of conformal repellers. Randomness and parameter dependency
- DCDS Home
- This Issue
-
Next Article
The Ruelle spectrum of generic transfer operators
A new variation of Bowen's formula for graph directed Markov systems
1. | Glendon College, York University, 2275 Bayview Avenue, Toronto, M4N 3M6, Canada |
References:
[1] |
A. Ghenciu and R. D. Mauldin, Conformal graph directed Markov systems,, preprint, (). Google Scholar |
[2] |
R. D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems,, Proc. London Math. Soc. (3), 73 (1996), 105.
doi: 10.1112/plms/s3-73.1.105. |
[3] |
R. D. Mauldin and M. Urbański, Conformal iterated function systems with applications to the geometry of continued fractions,, Trans. Amer. Math. Soc., 351 (1999), 4995.
doi: 10.1090/S0002-9947-99-02268-0. |
[4] |
R. D. Mauldin and M. Urbański, "Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets,", Cambridge Tracts in Mathematics, 148 (2003).
|
[5] |
R. D. Mauldin and S. C. Williams, Hausdorff dimension in graph directed constructions,, Trans. Amer. Math. Soc., 309 (1988), 811.
doi: 10.1090/S0002-9947-1988-0961615-4. |
show all references
References:
[1] |
A. Ghenciu and R. D. Mauldin, Conformal graph directed Markov systems,, preprint, (). Google Scholar |
[2] |
R. D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems,, Proc. London Math. Soc. (3), 73 (1996), 105.
doi: 10.1112/plms/s3-73.1.105. |
[3] |
R. D. Mauldin and M. Urbański, Conformal iterated function systems with applications to the geometry of continued fractions,, Trans. Amer. Math. Soc., 351 (1999), 4995.
doi: 10.1090/S0002-9947-99-02268-0. |
[4] |
R. D. Mauldin and M. Urbański, "Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets,", Cambridge Tracts in Mathematics, 148 (2003).
|
[5] |
R. D. Mauldin and S. C. Williams, Hausdorff dimension in graph directed constructions,, Trans. Amer. Math. Soc., 309 (1988), 811.
doi: 10.1090/S0002-9947-1988-0961615-4. |
[1] |
Mario Roy, Mariusz Urbański. Random graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 261-298. doi: 10.3934/dcds.2011.30.261 |
[2] |
Thomas Jordan, Mark Pollicott. The Hausdorff dimension of measures for iterated function systems which contract on average. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 235-246. doi: 10.3934/dcds.2008.22.235 |
[3] |
Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627 |
[4] |
Kanji Inui, Hikaru Okada, Hiroki Sumi. The Hausdorff dimension function of the family of conformal iterated function systems of generalized complex continued fractions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 753-766. doi: 10.3934/dcds.2020060 |
[5] |
Welington Cordeiro, Manfred Denker, Michiko Yuri. A note on specification for iterated function systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3475-3485. doi: 10.3934/dcdsb.2015.20.3475 |
[6] |
Yakov Pesin. On the work of Sarig on countable Markov chains and thermodynamic formalism. Journal of Modern Dynamics, 2014, 8 (1) : 1-14. doi: 10.3934/jmd.2014.8.1 |
[7] |
Manfred Denker, Yuri Kifer, Manuel Stadlbauer. Thermodynamic formalism for random countable Markov shifts. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 131-164. doi: 10.3934/dcds.2008.22.131 |
[8] |
Manfred Denker, Yuri Kifer, Manuel Stadlbauer. Corrigendum to: Thermodynamic formalism for random countable Markov shifts. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 593-594. doi: 10.3934/dcds.2015.35.593 |
[9] |
Michael Jakobson, Lucia D. Simonelli. Countable Markov partitions suitable for thermodynamic formalism. Journal of Modern Dynamics, 2018, 13: 199-219. doi: 10.3934/jmd.2018018 |
[10] |
Hiroki Sumi, Mariusz Urbański. Bowen parameter and Hausdorff dimension for expanding rational semigroups. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2591-2606. doi: 10.3934/dcds.2012.32.2591 |
[11] |
L. Cioletti, E. Silva, M. Stadlbauer. Thermodynamic formalism for topological Markov chains on standard Borel spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6277-6298. doi: 10.3934/dcds.2019274 |
[12] |
Pablo G. Barrientos, Abbas Fakhari, Aliasghar Sarizadeh. Density of fiberwise orbits in minimal iterated function systems on the circle. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3341-3352. doi: 10.3934/dcds.2014.34.3341 |
[13] |
David Cheban, Cristiana Mammana. Continuous dependence of attractors on parameters of non-autonomous dynamical systems and infinite iterated function systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 499-515. doi: 10.3934/dcds.2007.18.499 |
[14] |
Peter Bella, Arianna Giunti. Green's function for elliptic systems: Moment bounds. Networks & Heterogeneous Media, 2018, 13 (1) : 155-176. doi: 10.3934/nhm.2018007 |
[15] |
Fernando J. Sánchez-Salas. Dimension of Markov towers for non uniformly expanding one-dimensional systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1447-1464. doi: 10.3934/dcds.2003.9.1447 |
[16] |
Ethan Akin. Good strategies for the Iterated Prisoner's Dilemma: Smale vs. Markov. Journal of Dynamics & Games, 2017, 4 (3) : 217-253. doi: 10.3934/jdg.2017014 |
[17] |
Aline Cerqueira, Carlos Matheus, Carlos Gustavo Moreira. Continuity of Hausdorff dimension across generic dynamical Lagrange and Markov spectra. Journal of Modern Dynamics, 2018, 12: 151-174. doi: 10.3934/jmd.2018006 |
[18] |
Markus Böhm, Björn Schmalfuss. Bounds on the Hausdorff dimension of random attractors for infinite-dimensional random dynamical systems on fractals. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3115-3138. doi: 10.3934/dcdsb.2018303 |
[19] |
Vaughn Climenhaga. A note on two approaches to the thermodynamic formalism. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 995-1005. doi: 10.3934/dcds.2010.27.995 |
[20] |
Miaohua Jiang. Derivative formula of the potential function for generalized SRB measures of hyperbolic systems of codimension one. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 967-983. doi: 10.3934/dcds.2015.35.967 |
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]