July  2012, 32(7): 2553-2564. doi: 10.3934/dcds.2012.32.2553

On dimensions of conformal repellers. Randomness and parameter dependency

1. 

Department of Mathematics, University of Paris Sud 11, F-91405 Orsay, France

Received  December 2009 Revised  July 2010 Published  March 2012

We consider random conformal repellers. We show how to apply Bowen's formula for the Hausdorff dimension in this context and prove smoothness of the dimension with respect to parameters. The present article is essentially an extract of [11]. Our aim here is to emphasize the ideas and mechanisms behind rather than mathematical rigor.
Citation: Hans Henrik Rugh. On dimensions of conformal repellers. Randomness and parameter dependency. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2553-2564. doi: 10.3934/dcds.2012.32.2553
References:
[1]

L. M. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems,, Erg. Th. & Dyn. Syst., 16 (1996), 871.   Google Scholar

[2]

R. Bowen, Hausdorff dimension of quasi-circles,, IHES Publ., 50 (1979), 259.   Google Scholar

[3]

G. Birkhoff, "Lattice Theory,", 3rd edition, (1967).   Google Scholar

[4]

K. Falconer, Dimensions and measures of quasi self-similar sets,, Proc. Amer. Math. Soc., 106 (1989), 543.  doi: 10.1090/S0002-9939-1989-0969315-8.  Google Scholar

[5]

H. Furstenberg and H. Kesten, Products of random matrices,, Ann. Math. Statist., 31 (1960), 457.  doi: 10.1214/aoms/1177705909.  Google Scholar

[6]

D. Gatzouras and Y. Peres, Invariant measures of full dimension for some expanding maps,, Erg. Th. & Dyn. Syst., 17 (1997), 147.   Google Scholar

[7]

C. Liverani, Decay of correlations,, Annals Math. (2), 142 (1995), 239.  doi: 10.2307/2118636.  Google Scholar

[8]

D. Ruelle, Repellers for real analytic maps,, Erg. Th. & Dyn. Syst., 2 (1982), 99.   Google Scholar

[9]

D. Ruelle, Differentiation of SRB states,, Comm. Math. Phys., 187 (1997), 227.  doi: 10.1007/s002200050134.  Google Scholar

[10]

H. H. Rugh, Coupled maps and analytic function spaces,, Ann. Scient. Éc. Norm. Sup. (4), 35 (2002), 489.  doi: 10.1016/S0012-9593(02)01102-3.  Google Scholar

[11]

H. H. Rugh, On the dimensions of conformal repellers. Randomness and parameter dependency,, Ann. Math. (2), 168 (2008), 695.  doi: 10.4007/annals.2008.168.695.  Google Scholar

[12]

M. Urbański and A. Zdunik, Real analyticity of Hausdorff dimension of finer Julia sets of exponential family,, Erg. Th. & Dyn. Syst., 24 (2004), 279.   Google Scholar

show all references

References:
[1]

L. M. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems,, Erg. Th. & Dyn. Syst., 16 (1996), 871.   Google Scholar

[2]

R. Bowen, Hausdorff dimension of quasi-circles,, IHES Publ., 50 (1979), 259.   Google Scholar

[3]

G. Birkhoff, "Lattice Theory,", 3rd edition, (1967).   Google Scholar

[4]

K. Falconer, Dimensions and measures of quasi self-similar sets,, Proc. Amer. Math. Soc., 106 (1989), 543.  doi: 10.1090/S0002-9939-1989-0969315-8.  Google Scholar

[5]

H. Furstenberg and H. Kesten, Products of random matrices,, Ann. Math. Statist., 31 (1960), 457.  doi: 10.1214/aoms/1177705909.  Google Scholar

[6]

D. Gatzouras and Y. Peres, Invariant measures of full dimension for some expanding maps,, Erg. Th. & Dyn. Syst., 17 (1997), 147.   Google Scholar

[7]

C. Liverani, Decay of correlations,, Annals Math. (2), 142 (1995), 239.  doi: 10.2307/2118636.  Google Scholar

[8]

D. Ruelle, Repellers for real analytic maps,, Erg. Th. & Dyn. Syst., 2 (1982), 99.   Google Scholar

[9]

D. Ruelle, Differentiation of SRB states,, Comm. Math. Phys., 187 (1997), 227.  doi: 10.1007/s002200050134.  Google Scholar

[10]

H. H. Rugh, Coupled maps and analytic function spaces,, Ann. Scient. Éc. Norm. Sup. (4), 35 (2002), 489.  doi: 10.1016/S0012-9593(02)01102-3.  Google Scholar

[11]

H. H. Rugh, On the dimensions of conformal repellers. Randomness and parameter dependency,, Ann. Math. (2), 168 (2008), 695.  doi: 10.4007/annals.2008.168.695.  Google Scholar

[12]

M. Urbański and A. Zdunik, Real analyticity of Hausdorff dimension of finer Julia sets of exponential family,, Erg. Th. & Dyn. Syst., 24 (2004), 279.   Google Scholar

[1]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[2]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[3]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[4]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[5]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[6]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[7]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[8]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[9]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[10]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[11]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[12]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[13]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[14]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[15]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[16]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[17]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[18]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[19]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[20]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]