July  2012, 32(7): 2553-2564. doi: 10.3934/dcds.2012.32.2553

On dimensions of conformal repellers. Randomness and parameter dependency

1. 

Department of Mathematics, University of Paris Sud 11, F-91405 Orsay, France

Received  December 2009 Revised  July 2010 Published  March 2012

We consider random conformal repellers. We show how to apply Bowen's formula for the Hausdorff dimension in this context and prove smoothness of the dimension with respect to parameters. The present article is essentially an extract of [11]. Our aim here is to emphasize the ideas and mechanisms behind rather than mathematical rigor.
Citation: Hans Henrik Rugh. On dimensions of conformal repellers. Randomness and parameter dependency. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2553-2564. doi: 10.3934/dcds.2012.32.2553
References:
[1]

L. M. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems,, Erg. Th. & Dyn. Syst., 16 (1996), 871. Google Scholar

[2]

R. Bowen, Hausdorff dimension of quasi-circles,, IHES Publ., 50 (1979), 259. Google Scholar

[3]

G. Birkhoff, "Lattice Theory,", 3rd edition, (1967). Google Scholar

[4]

K. Falconer, Dimensions and measures of quasi self-similar sets,, Proc. Amer. Math. Soc., 106 (1989), 543. doi: 10.1090/S0002-9939-1989-0969315-8. Google Scholar

[5]

H. Furstenberg and H. Kesten, Products of random matrices,, Ann. Math. Statist., 31 (1960), 457. doi: 10.1214/aoms/1177705909. Google Scholar

[6]

D. Gatzouras and Y. Peres, Invariant measures of full dimension for some expanding maps,, Erg. Th. & Dyn. Syst., 17 (1997), 147. Google Scholar

[7]

C. Liverani, Decay of correlations,, Annals Math. (2), 142 (1995), 239. doi: 10.2307/2118636. Google Scholar

[8]

D. Ruelle, Repellers for real analytic maps,, Erg. Th. & Dyn. Syst., 2 (1982), 99. Google Scholar

[9]

D. Ruelle, Differentiation of SRB states,, Comm. Math. Phys., 187 (1997), 227. doi: 10.1007/s002200050134. Google Scholar

[10]

H. H. Rugh, Coupled maps and analytic function spaces,, Ann. Scient. Éc. Norm. Sup. (4), 35 (2002), 489. doi: 10.1016/S0012-9593(02)01102-3. Google Scholar

[11]

H. H. Rugh, On the dimensions of conformal repellers. Randomness and parameter dependency,, Ann. Math. (2), 168 (2008), 695. doi: 10.4007/annals.2008.168.695. Google Scholar

[12]

M. Urbański and A. Zdunik, Real analyticity of Hausdorff dimension of finer Julia sets of exponential family,, Erg. Th. & Dyn. Syst., 24 (2004), 279. Google Scholar

show all references

References:
[1]

L. M. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems,, Erg. Th. & Dyn. Syst., 16 (1996), 871. Google Scholar

[2]

R. Bowen, Hausdorff dimension of quasi-circles,, IHES Publ., 50 (1979), 259. Google Scholar

[3]

G. Birkhoff, "Lattice Theory,", 3rd edition, (1967). Google Scholar

[4]

K. Falconer, Dimensions and measures of quasi self-similar sets,, Proc. Amer. Math. Soc., 106 (1989), 543. doi: 10.1090/S0002-9939-1989-0969315-8. Google Scholar

[5]

H. Furstenberg and H. Kesten, Products of random matrices,, Ann. Math. Statist., 31 (1960), 457. doi: 10.1214/aoms/1177705909. Google Scholar

[6]

D. Gatzouras and Y. Peres, Invariant measures of full dimension for some expanding maps,, Erg. Th. & Dyn. Syst., 17 (1997), 147. Google Scholar

[7]

C. Liverani, Decay of correlations,, Annals Math. (2), 142 (1995), 239. doi: 10.2307/2118636. Google Scholar

[8]

D. Ruelle, Repellers for real analytic maps,, Erg. Th. & Dyn. Syst., 2 (1982), 99. Google Scholar

[9]

D. Ruelle, Differentiation of SRB states,, Comm. Math. Phys., 187 (1997), 227. doi: 10.1007/s002200050134. Google Scholar

[10]

H. H. Rugh, Coupled maps and analytic function spaces,, Ann. Scient. Éc. Norm. Sup. (4), 35 (2002), 489. doi: 10.1016/S0012-9593(02)01102-3. Google Scholar

[11]

H. H. Rugh, On the dimensions of conformal repellers. Randomness and parameter dependency,, Ann. Math. (2), 168 (2008), 695. doi: 10.4007/annals.2008.168.695. Google Scholar

[12]

M. Urbański and A. Zdunik, Real analyticity of Hausdorff dimension of finer Julia sets of exponential family,, Erg. Th. & Dyn. Syst., 24 (2004), 279. Google Scholar

[1]

Shmuel Friedland, Gunter Ochs. Hausdorff dimension, strong hyperbolicity and complex dynamics. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 405-430. doi: 10.3934/dcds.1998.4.405

[2]

Krzysztof Barański. Hausdorff dimension of self-affine limit sets with an invariant direction. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1015-1023. doi: 10.3934/dcds.2008.21.1015

[3]

Rogelio Valdez. Self-similarity of the Mandelbrot set for real essentially bounded combinatorics. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 897-922. doi: 10.3934/dcds.2006.16.897

[4]

Markus Böhm, Björn Schmalfuss. Bounds on the Hausdorff dimension of random attractors for infinite-dimensional random dynamical systems on fractals. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3115-3138. doi: 10.3934/dcdsb.2018303

[5]

José Ignacio Alvarez-Hamelin, Luca Dall'Asta, Alain Barrat, Alessandro Vespignani. K-core decomposition of Internet graphs: hierarchies, self-similarity and measurement biases. Networks & Heterogeneous Media, 2008, 3 (2) : 371-393. doi: 10.3934/nhm.2008.3.371

[6]

Peter V. Gordon, Cyrill B. Muratov. Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks & Heterogeneous Media, 2012, 7 (4) : 767-780. doi: 10.3934/nhm.2012.7.767

[7]

Juan Wang, Yongluo Cao, Yun Zhao. Dimension estimates in non-conformal setting. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3847-3873. doi: 10.3934/dcds.2014.34.3847

[8]

Luis Barreira. Dimension theory of flows: A survey. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3345-3362. doi: 10.3934/dcdsb.2015.20.3345

[9]

Hiroki Sumi, Mariusz Urbański. Bowen parameter and Hausdorff dimension for expanding rational semigroups. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2591-2606. doi: 10.3934/dcds.2012.32.2591

[10]

Sara Munday. On Hausdorff dimension and cusp excursions for Fuchsian groups. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2503-2520. doi: 10.3934/dcds.2012.32.2503

[11]

Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118.

[12]

Jon Chaika. Hausdorff dimension for ergodic measures of interval exchange transformations. Journal of Modern Dynamics, 2008, 2 (3) : 457-464. doi: 10.3934/jmd.2008.2.457

[13]

Krzysztof Barański, Michał Wardal. On the Hausdorff dimension of the Sierpiński Julia sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3293-3313. doi: 10.3934/dcds.2015.35.3293

[14]

Tomasz Downarowicz, Olena Karpel. Dynamics in dimension zero A survey. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1033-1062. doi: 10.3934/dcds.2018044

[15]

Nuno Luzia. On the uniqueness of an ergodic measure of full dimension for non-conformal repellers. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5763-5780. doi: 10.3934/dcds.2017250

[16]

Lulu Fang, Min Wu. Hausdorff dimension of certain sets arising in Engel continued fractions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2375-2393. doi: 10.3934/dcds.2018098

[17]

Thomas Jordan, Mark Pollicott. The Hausdorff dimension of measures for iterated function systems which contract on average. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 235-246. doi: 10.3934/dcds.2008.22.235

[18]

Vanderlei Horita, Marcelo Viana. Hausdorff dimension for non-hyperbolic repellers II: DA diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1125-1152. doi: 10.3934/dcds.2005.13.1125

[19]

Doug Hensley. Continued fractions, Cantor sets, Hausdorff dimension, and transfer operators and their analytic extension. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2417-2436. doi: 10.3934/dcds.2012.32.2417

[20]

Carlos Matheus, Jacob Palis. An estimate on the Hausdorff dimension of stable sets of non-uniformly hyperbolic horseshoes. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 431-448. doi: 10.3934/dcds.2018020

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]