July  2012, 32(7): 2553-2564. doi: 10.3934/dcds.2012.32.2553

On dimensions of conformal repellers. Randomness and parameter dependency

1. 

Department of Mathematics, University of Paris Sud 11, F-91405 Orsay, France

Received  December 2009 Revised  July 2010 Published  March 2012

We consider random conformal repellers. We show how to apply Bowen's formula for the Hausdorff dimension in this context and prove smoothness of the dimension with respect to parameters. The present article is essentially an extract of [11]. Our aim here is to emphasize the ideas and mechanisms behind rather than mathematical rigor.
Citation: Hans Henrik Rugh. On dimensions of conformal repellers. Randomness and parameter dependency. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2553-2564. doi: 10.3934/dcds.2012.32.2553
References:
[1]

L. M. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems, Erg. Th. & Dyn. Syst., 16 (1996), 871-927.

[2]

R. Bowen, Hausdorff dimension of quasi-circles, IHES Publ., 50 (1979), 259-273.

[3]

G. Birkhoff, "Lattice Theory," 3rd edition, American Mathematical Society Colloquium Publications, Vol. XXV, Amer. Math. Soc., Providence, RI, 1967.

[4]

K. Falconer, Dimensions and measures of quasi self-similar sets, Proc. Amer. Math. Soc., 106 (1989), 543-554. doi: 10.1090/S0002-9939-1989-0969315-8.

[5]

H. Furstenberg and H. Kesten, Products of random matrices, Ann. Math. Statist., 31 (1960), 457-469. doi: 10.1214/aoms/1177705909.

[6]

D. Gatzouras and Y. Peres, Invariant measures of full dimension for some expanding maps, Erg. Th. & Dyn. Syst., 17 (1997), 147-167.

[7]

C. Liverani, Decay of correlations, Annals Math. (2), 142 (1995), 239-301. doi: 10.2307/2118636.

[8]

D. Ruelle, Repellers for real analytic maps, Erg. Th. & Dyn. Syst., 2 (1982), 99-107.

[9]

D. Ruelle, Differentiation of SRB states, Comm. Math. Phys., 187 (1997), 227-241. doi: 10.1007/s002200050134.

[10]

H. H. Rugh, Coupled maps and analytic function spaces, Ann. Scient. Éc. Norm. Sup. (4), 35 (2002), 489-535. doi: 10.1016/S0012-9593(02)01102-3.

[11]

H. H. Rugh, On the dimensions of conformal repellers. Randomness and parameter dependency, Ann. Math. (2), 168 (2008), 695-748. doi: 10.4007/annals.2008.168.695.

[12]

M. Urbański and A. Zdunik, Real analyticity of Hausdorff dimension of finer Julia sets of exponential family, Erg. Th. & Dyn. Syst., 24 (2004), 279-315.

show all references

References:
[1]

L. M. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems, Erg. Th. & Dyn. Syst., 16 (1996), 871-927.

[2]

R. Bowen, Hausdorff dimension of quasi-circles, IHES Publ., 50 (1979), 259-273.

[3]

G. Birkhoff, "Lattice Theory," 3rd edition, American Mathematical Society Colloquium Publications, Vol. XXV, Amer. Math. Soc., Providence, RI, 1967.

[4]

K. Falconer, Dimensions and measures of quasi self-similar sets, Proc. Amer. Math. Soc., 106 (1989), 543-554. doi: 10.1090/S0002-9939-1989-0969315-8.

[5]

H. Furstenberg and H. Kesten, Products of random matrices, Ann. Math. Statist., 31 (1960), 457-469. doi: 10.1214/aoms/1177705909.

[6]

D. Gatzouras and Y. Peres, Invariant measures of full dimension for some expanding maps, Erg. Th. & Dyn. Syst., 17 (1997), 147-167.

[7]

C. Liverani, Decay of correlations, Annals Math. (2), 142 (1995), 239-301. doi: 10.2307/2118636.

[8]

D. Ruelle, Repellers for real analytic maps, Erg. Th. & Dyn. Syst., 2 (1982), 99-107.

[9]

D. Ruelle, Differentiation of SRB states, Comm. Math. Phys., 187 (1997), 227-241. doi: 10.1007/s002200050134.

[10]

H. H. Rugh, Coupled maps and analytic function spaces, Ann. Scient. Éc. Norm. Sup. (4), 35 (2002), 489-535. doi: 10.1016/S0012-9593(02)01102-3.

[11]

H. H. Rugh, On the dimensions of conformal repellers. Randomness and parameter dependency, Ann. Math. (2), 168 (2008), 695-748. doi: 10.4007/annals.2008.168.695.

[12]

M. Urbański and A. Zdunik, Real analyticity of Hausdorff dimension of finer Julia sets of exponential family, Erg. Th. & Dyn. Syst., 24 (2004), 279-315.

[1]

Hillel Furstenberg. From invariance to self-similarity: The work of Michael Hochman on fractal dimension and its aftermath. Journal of Modern Dynamics, 2019, 15: 437-449. doi: 10.3934/jmd.2019027

[2]

Shmuel Friedland, Gunter Ochs. Hausdorff dimension, strong hyperbolicity and complex dynamics. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 405-430. doi: 10.3934/dcds.1998.4.405

[3]

Krzysztof Barański. Hausdorff dimension of self-affine limit sets with an invariant direction. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1015-1023. doi: 10.3934/dcds.2008.21.1015

[4]

Kanji Inui, Hikaru Okada, Hiroki Sumi. The Hausdorff dimension function of the family of conformal iterated function systems of generalized complex continued fractions. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 753-766. doi: 10.3934/dcds.2020060

[5]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems and Imaging, 2021, 15 (3) : 475-498. doi: 10.3934/ipi.2021001

[6]

Rogelio Valdez. Self-similarity of the Mandelbrot set for real essentially bounded combinatorics. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 897-922. doi: 10.3934/dcds.2006.16.897

[7]

Markus Böhm, Björn Schmalfuss. Bounds on the Hausdorff dimension of random attractors for infinite-dimensional random dynamical systems on fractals. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3115-3138. doi: 10.3934/dcdsb.2018303

[8]

Luis Barreira. Dimension theory of flows: A survey. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3345-3362. doi: 10.3934/dcdsb.2015.20.3345

[9]

Yunping Wang, Ercai Chen, Xiaoyao Zhou. Mean dimension theory in symbolic dynamics for finitely generated amenable groups. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022050

[10]

Juan Wang, Yongluo Cao, Yun Zhao. Dimension estimates in non-conformal setting. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3847-3873. doi: 10.3934/dcds.2014.34.3847

[11]

Hiroki Sumi, Mariusz Urbański. Bowen parameter and Hausdorff dimension for expanding rational semigroups. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2591-2606. doi: 10.3934/dcds.2012.32.2591

[12]

Sara Munday. On Hausdorff dimension and cusp excursions for Fuchsian groups. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2503-2520. doi: 10.3934/dcds.2012.32.2503

[13]

Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118.

[14]

Jon Chaika. Hausdorff dimension for ergodic measures of interval exchange transformations. Journal of Modern Dynamics, 2008, 2 (3) : 457-464. doi: 10.3934/jmd.2008.2.457

[15]

Krzysztof Barański, Michał Wardal. On the Hausdorff dimension of the Sierpiński Julia sets. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3293-3313. doi: 10.3934/dcds.2015.35.3293

[16]

José Ignacio Alvarez-Hamelin, Luca Dall'Asta, Alain Barrat, Alessandro Vespignani. K-core decomposition of Internet graphs: hierarchies, self-similarity and measurement biases. Networks and Heterogeneous Media, 2008, 3 (2) : 371-393. doi: 10.3934/nhm.2008.3.371

[17]

Peter V. Gordon, Cyrill B. Muratov. Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks and Heterogeneous Media, 2012, 7 (4) : 767-780. doi: 10.3934/nhm.2012.7.767

[18]

Changming Song, Yun Wang. Nonlocal latent low rank sparse representation for single image super resolution via self-similarity learning. Inverse Problems and Imaging, 2021, 15 (6) : 1347-1362. doi: 10.3934/ipi.2021017

[19]

Tomasz Downarowicz, Olena Karpel. Dynamics in dimension zero A survey. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1033-1062. doi: 10.3934/dcds.2018044

[20]

Nuno Luzia. On the uniqueness of an ergodic measure of full dimension for non-conformal repellers. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5763-5780. doi: 10.3934/dcds.2017250

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]