August  2012, 32(8): 2675-2699. doi: 10.3934/dcds.2012.32.2675

Numerical recipes for investigating endemic equilibria of age-structured SIR epidemics

1. 

Department of Mathematics and Computer Science, University of Udine, via delle Scienze 206, I33100 Udine, Italy

2. 

Department of Mathematics and Computer Science, University of Trieste, via Valerio 12, I34127 Trieste, Italy

Received  May 2011 Revised  July 2011 Published  March 2012

The subject of this paper is the analysis of the equibria of a SIR type epidemic model, which is taken as a case study among the wide family of dynamical systems of infinite dimension. For this class of systems both the determination of the stationary solutions and the analysis of their local asymptotic stability are often unattainable theoretically, thus requiring the application of existing numerical tools and/or the development of new ones. Therefore, rather than devoting our attention to the SIR model's features, its biological and physical interpretation or its theoretical mathematical analysis, the main purpose here is to discuss how to study its equilibria numerically, especially as far as their stability is concerned. To this end, we briefly analyze the construction and solution of the system of nonlinear algebraic equations leading to the stationary solutions, and then concentrate on two numerical recipes for approximating the stability determining values known as the characteristic roots. An algorithm for the purpose is given in full detail. Two applications are presented and discussed in order to show the kind of results that can be obtained with these tools.
Citation: Dimitri Breda, Stefano Maset, Rossana Vermiglio. Numerical recipes for investigating endemic equilibria of age-structured SIR epidemics. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2675-2699. doi: 10.3934/dcds.2012.32.2675
References:
[1]

E. L. Allgower and K. Georg, "Introduction to Numerical Continuation Methods," Reprint of the 1990 edition [Springer-Verlag, Berlin; MR1059455 (92a:65165)], Classics in Applied Mathematics, 45, SIAM, Philadelphia, PA, 2003.

[2]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control," Oxford University Press, New York, Tokyo, 1991.

[3]

E. Beretta and D. Breda, An SEIR epidemic model with constant latency time and infectious period, Math. Biosci. Eng., 8 (2011), 931-952. doi: 10.3934/mbe.2011.8.931.

[4]

D. Breda, "Numerical Computation of Characteristic Roots for Delay Differential Equations," Ph.D thesis, Ph.D in Computational Mathematics, Università di Padova, 2004.

[5]

D. Breda, Nonautonomous delay differential equations in Hilbert spaces and Lyapunov exponents, Diff. Int. Equations, 23 (2010), 935-956.

[6]

D. Breda, C. Cusulin, M. Iannelli, S. Maset and R. Vermiglio, Stability analysis of age-structured population equations by pseudospectral differencing methods, J. Math. Biol., 54 (2007), 701-720. doi: 10.1007/s00285-006-0064-4.

[7]

D. Breda, M. Iannelli, S. Maset and R. Vermiglio, Stability analysis of the Gurtin-MacCamy model, SIAM J. Numer. Anal., 46 (2008), 980-995. doi: 10.1137/070685658.

[8]

D. Breda, S. Maset and R. Vermiglio, Pseudospectral differencing methods for characteristic roots of delay differential equations, SIAM J. Sci. Comput., 27 (2005), 482-495. doi: 10.1137/030601600.

[9]

D. Breda, S. Maset and R. Vermiglio, Pseudospectral approximation of eigenvalues of derivative operators with non-local boundary conditions, Appl. Numer. Math., 56 (2006), 318-331. doi: 10.1016/j.apnum.2005.04.011.

[10]

D. Breda, S. Maset and R. Vermiglio, Numerical approximation of characteristic values of partial retarded functional differential equations, Numer. Math., 113 (2009), 181-242. doi: 10.1007/s00211-009-0233-7.

[11]

D. Breda, S. Maset and R. Vermiglio, Approximation of eigenvalues of evolution operators for linear retarded functional differential equations, 2012, to appear on SIAM J. Numer. Anal.

[12]

D. Breda, S. Maset and R. Vermiglio, Computing eigenvalues of Gurtin-MacCamy models with diffusion, IMA J. Numer. Anal., published online, 2011. doi: 10.1093/imanum/drr004.

[13]

D. Breda and D. Visetti, Existence, multiplicity and stability of endemic states for an age-structured S-I epidemic model, Math. Biosci., 235 (2012), 19-31. doi: 10.1016/j.mbs.2011.10.004.

[14]

C. Chicone and Y. Latushkin, "Evolution Semigroups in Dynamical Systems and Differential Equations," Mathematical Surveys and Monographs, 70, American Mathematical Society, Providence, RI, 1999.

[15]

O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, "Delay Equations. Functional, Complex, and Nonlinear Analysis," American Mathematical Sciences, 110, Springer-Verlag, New York, 1995.

[16]

K. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations," Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 1999.

[17]

A. Franceschetti, A. Pugliese and D. Breda, Multiple endemic states in age-structured SIR epidemic models, 2012, to appear on Math. Biosci. Eng.

[18]

W. J. F. Govaerts, "Numerical Methods for Bifurcations of Dynamical Equilibria," SIAM, Philadelphia, PA, 2000. doi: 10.1137/1.9780898719543.

[19]

D. Greenhalgh, Threshold and stability results for an epidemic model with an age-structured meeting rate, IMA J. Math. Appl. Med. Biol., 5 (1988), 81-100. doi: 10.1093/imammb/5.2.81.

[20]

M. E. Gurtin and R. C. MacCamy, Non-linear age-dependent population dynamics, Archiv. Rat. Mech. Anal., 54 (1974), 281-300. doi: 10.1007/BF00250793.

[21]

M. Iannelli, "Mathematical Theory of Age-Structured Population Dynamics," Applied Mathematics Monographs (C.N.R.), Giardini Editori e Stampatori, Pisa, Italy, 1994.

[22]

H. Inaba, Threshold and stability results for an age-structured epidemic model, J. Math. Biol., 28 (1990), 411-434. doi: 10.1007/BF00178326.

[23]

Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory," Second edition, Applied Mathematical Sciences, 112, Springer-Verlag, New York, 1998.

[24]

S. Liu, E. Beretta and D. Breda, Predator-prey model of Beddington-DeAngelis type with maturation and gestation delays, Nonlinear Anal. Real World Appl., 11 (2010), 4072-4091. doi: 10.1016/j.nonrwa.2010.03.013.

[25]

A. Lyapunov, "Problém Géneral de la Stabilité du Mouvement," Annals of Mathematics Studies, 17, Princeton University Press, 1949.

[26]

R. M. May and R. M. Anderson, Endemic infections in growing populations, Mathematical Biosciences, 77 (1985), 141-156. doi: 10.1016/0025-5564(85)90093-8.

[27]

I. Mazzer, "Un Modello per la Dinamica di Più Popolazioni: Esistenza, Unicitàe Approssimazione Numerica della Soluzione," Master's thesis, University of Udine, (in italian), 2009.

[28]

L. N. Trefethen, "Spectral Methods in MATLAB," Software, Environment, and Tools, 10, SIAM, Philadelphia, PA, 2000.

[29]

J. H. Wilkinson, The perfidious polynomial, in "Studies in Numerical Analysis" (ed. G. H. Golub), Studies in Mathematics, 24, Mathematical Association of America, Washington, DC, (1984), 1-28.

show all references

References:
[1]

E. L. Allgower and K. Georg, "Introduction to Numerical Continuation Methods," Reprint of the 1990 edition [Springer-Verlag, Berlin; MR1059455 (92a:65165)], Classics in Applied Mathematics, 45, SIAM, Philadelphia, PA, 2003.

[2]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control," Oxford University Press, New York, Tokyo, 1991.

[3]

E. Beretta and D. Breda, An SEIR epidemic model with constant latency time and infectious period, Math. Biosci. Eng., 8 (2011), 931-952. doi: 10.3934/mbe.2011.8.931.

[4]

D. Breda, "Numerical Computation of Characteristic Roots for Delay Differential Equations," Ph.D thesis, Ph.D in Computational Mathematics, Università di Padova, 2004.

[5]

D. Breda, Nonautonomous delay differential equations in Hilbert spaces and Lyapunov exponents, Diff. Int. Equations, 23 (2010), 935-956.

[6]

D. Breda, C. Cusulin, M. Iannelli, S. Maset and R. Vermiglio, Stability analysis of age-structured population equations by pseudospectral differencing methods, J. Math. Biol., 54 (2007), 701-720. doi: 10.1007/s00285-006-0064-4.

[7]

D. Breda, M. Iannelli, S. Maset and R. Vermiglio, Stability analysis of the Gurtin-MacCamy model, SIAM J. Numer. Anal., 46 (2008), 980-995. doi: 10.1137/070685658.

[8]

D. Breda, S. Maset and R. Vermiglio, Pseudospectral differencing methods for characteristic roots of delay differential equations, SIAM J. Sci. Comput., 27 (2005), 482-495. doi: 10.1137/030601600.

[9]

D. Breda, S. Maset and R. Vermiglio, Pseudospectral approximation of eigenvalues of derivative operators with non-local boundary conditions, Appl. Numer. Math., 56 (2006), 318-331. doi: 10.1016/j.apnum.2005.04.011.

[10]

D. Breda, S. Maset and R. Vermiglio, Numerical approximation of characteristic values of partial retarded functional differential equations, Numer. Math., 113 (2009), 181-242. doi: 10.1007/s00211-009-0233-7.

[11]

D. Breda, S. Maset and R. Vermiglio, Approximation of eigenvalues of evolution operators for linear retarded functional differential equations, 2012, to appear on SIAM J. Numer. Anal.

[12]

D. Breda, S. Maset and R. Vermiglio, Computing eigenvalues of Gurtin-MacCamy models with diffusion, IMA J. Numer. Anal., published online, 2011. doi: 10.1093/imanum/drr004.

[13]

D. Breda and D. Visetti, Existence, multiplicity and stability of endemic states for an age-structured S-I epidemic model, Math. Biosci., 235 (2012), 19-31. doi: 10.1016/j.mbs.2011.10.004.

[14]

C. Chicone and Y. Latushkin, "Evolution Semigroups in Dynamical Systems and Differential Equations," Mathematical Surveys and Monographs, 70, American Mathematical Society, Providence, RI, 1999.

[15]

O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, "Delay Equations. Functional, Complex, and Nonlinear Analysis," American Mathematical Sciences, 110, Springer-Verlag, New York, 1995.

[16]

K. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations," Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 1999.

[17]

A. Franceschetti, A. Pugliese and D. Breda, Multiple endemic states in age-structured SIR epidemic models, 2012, to appear on Math. Biosci. Eng.

[18]

W. J. F. Govaerts, "Numerical Methods for Bifurcations of Dynamical Equilibria," SIAM, Philadelphia, PA, 2000. doi: 10.1137/1.9780898719543.

[19]

D. Greenhalgh, Threshold and stability results for an epidemic model with an age-structured meeting rate, IMA J. Math. Appl. Med. Biol., 5 (1988), 81-100. doi: 10.1093/imammb/5.2.81.

[20]

M. E. Gurtin and R. C. MacCamy, Non-linear age-dependent population dynamics, Archiv. Rat. Mech. Anal., 54 (1974), 281-300. doi: 10.1007/BF00250793.

[21]

M. Iannelli, "Mathematical Theory of Age-Structured Population Dynamics," Applied Mathematics Monographs (C.N.R.), Giardini Editori e Stampatori, Pisa, Italy, 1994.

[22]

H. Inaba, Threshold and stability results for an age-structured epidemic model, J. Math. Biol., 28 (1990), 411-434. doi: 10.1007/BF00178326.

[23]

Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory," Second edition, Applied Mathematical Sciences, 112, Springer-Verlag, New York, 1998.

[24]

S. Liu, E. Beretta and D. Breda, Predator-prey model of Beddington-DeAngelis type with maturation and gestation delays, Nonlinear Anal. Real World Appl., 11 (2010), 4072-4091. doi: 10.1016/j.nonrwa.2010.03.013.

[25]

A. Lyapunov, "Problém Géneral de la Stabilité du Mouvement," Annals of Mathematics Studies, 17, Princeton University Press, 1949.

[26]

R. M. May and R. M. Anderson, Endemic infections in growing populations, Mathematical Biosciences, 77 (1985), 141-156. doi: 10.1016/0025-5564(85)90093-8.

[27]

I. Mazzer, "Un Modello per la Dinamica di Più Popolazioni: Esistenza, Unicitàe Approssimazione Numerica della Soluzione," Master's thesis, University of Udine, (in italian), 2009.

[28]

L. N. Trefethen, "Spectral Methods in MATLAB," Software, Environment, and Tools, 10, SIAM, Philadelphia, PA, 2000.

[29]

J. H. Wilkinson, The perfidious polynomial, in "Studies in Numerical Analysis" (ed. G. H. Golub), Studies in Mathematics, 24, Mathematical Association of America, Washington, DC, (1984), 1-28.

[1]

Toshikazu Kuniya, Jinliang Wang, Hisashi Inaba. A multi-group SIR epidemic model with age structure. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3515-3550. doi: 10.3934/dcdsb.2016109

[2]

Huizi Yang, Zhanwen Yang, Shengqiang Liu. Numerical threshold of linearly implicit Euler method for nonlinear infection-age SIR models. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022067

[3]

C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008

[4]

David M. Bortz. Characteristic roots for two-lag linear delay differential equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2409-2422. doi: 10.3934/dcdsb.2016053

[5]

Andrey V. Melnik, Andrei Korobeinikov. Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility. Mathematical Biosciences & Engineering, 2013, 10 (2) : 369-378. doi: 10.3934/mbe.2013.10.369

[6]

Jinliang Wang, Xianning Liu, Toshikazu Kuniya, Jingmei Pang. Global stability for multi-group SIR and SEIR epidemic models with age-dependent susceptibility. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2795-2812. doi: 10.3934/dcdsb.2017151

[7]

Gadi Fibich, Samuel Nordmann. Exact description of SIR-Bass epidemics on 1D lattices. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 505-535. doi: 10.3934/dcds.2021126

[8]

C. Connell McCluskey. Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes. Mathematical Biosciences & Engineering, 2012, 9 (4) : 819-841. doi: 10.3934/mbe.2012.9.819

[9]

Andrea Franceschetti, Andrea Pugliese, Dimitri Breda. Multiple endemic states in age-structured $SIR$ epidemic models. Mathematical Biosciences & Engineering, 2012, 9 (3) : 577-599. doi: 10.3934/mbe.2012.9.577

[10]

Hisashi Inaba. Mathematical analysis of an age-structured SIR epidemic model with vertical transmission. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 69-96. doi: 10.3934/dcdsb.2006.6.69

[11]

Hassan Tahir, Asaf Khan, Anwarud Din, Amir Khan, Gul Zaman. Optimal control strategy for an age-structured SIR endemic model. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2535-2555. doi: 10.3934/dcdss.2021054

[12]

PaweŁ Hitczenko, Georgi S. Medvedev. Stability of equilibria of randomly perturbed maps. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 369-381. doi: 10.3934/dcdsb.2017017

[13]

D. J. W. Simpson. On the stability of boundary equilibria in Filippov systems. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3093-3111. doi: 10.3934/cpaa.2021097

[14]

Jacek Banasiak, Eddy Kimba Phongi, MirosŁaw Lachowicz. A singularly perturbed SIS model with age structure. Mathematical Biosciences & Engineering, 2013, 10 (3) : 499-521. doi: 10.3934/mbe.2013.10.499

[15]

Fethallah Benmansour, Guillaume Carlier, Gabriel Peyré, Filippo Santambrogio. Numerical approximation of continuous traffic congestion equilibria. Networks and Heterogeneous Media, 2009, 4 (3) : 605-623. doi: 10.3934/nhm.2009.4.605

[16]

Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (2) : 347-361. doi: 10.3934/mbe.2010.7.347

[17]

Zhen Jin, Zhien Ma. The stability of an SIR epidemic model with time delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 101-109. doi: 10.3934/mbe.2006.3.101

[18]

Alessia Andò, Dimitri Breda, Francesca Scarabel. Numerical continuation and delay equations: A novel approach for complex models of structured populations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2619-2640. doi: 10.3934/dcdss.2020165

[19]

Annalisa Iuorio, Christian Kuehn, Peter Szmolyan. Geometry and numerical continuation of multiscale orbits in a nonconvex variational problem. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1269-1290. doi: 10.3934/dcdss.2020073

[20]

Frederic Laurent-Polz, James Montaldi, Mark Roberts. Point vortices on the sphere: Stability of symmetric relative equilibria. Journal of Geometric Mechanics, 2011, 3 (4) : 439-486. doi: 10.3934/jgm.2011.3.439

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (167)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]