August  2012, 32(8): 2675-2699. doi: 10.3934/dcds.2012.32.2675

Numerical recipes for investigating endemic equilibria of age-structured SIR epidemics

1. 

Department of Mathematics and Computer Science, University of Udine, via delle Scienze 206, I33100 Udine, Italy

2. 

Department of Mathematics and Computer Science, University of Trieste, via Valerio 12, I34127 Trieste, Italy

Received  May 2011 Revised  July 2011 Published  March 2012

The subject of this paper is the analysis of the equibria of a SIR type epidemic model, which is taken as a case study among the wide family of dynamical systems of infinite dimension. For this class of systems both the determination of the stationary solutions and the analysis of their local asymptotic stability are often unattainable theoretically, thus requiring the application of existing numerical tools and/or the development of new ones. Therefore, rather than devoting our attention to the SIR model's features, its biological and physical interpretation or its theoretical mathematical analysis, the main purpose here is to discuss how to study its equilibria numerically, especially as far as their stability is concerned. To this end, we briefly analyze the construction and solution of the system of nonlinear algebraic equations leading to the stationary solutions, and then concentrate on two numerical recipes for approximating the stability determining values known as the characteristic roots. An algorithm for the purpose is given in full detail. Two applications are presented and discussed in order to show the kind of results that can be obtained with these tools.
Citation: Dimitri Breda, Stefano Maset, Rossana Vermiglio. Numerical recipes for investigating endemic equilibria of age-structured SIR epidemics. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2675-2699. doi: 10.3934/dcds.2012.32.2675
References:
[1]

E. L. Allgower and K. Georg, "Introduction to Numerical Continuation Methods," Reprint of the 1990 edition [Springer-Verlag, Berlin; MR1059455 (92a:65165)], Classics in Applied Mathematics, 45,, SIAM, (2003). Google Scholar

[2]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control,", Oxford University Press, (1991). Google Scholar

[3]

E. Beretta and D. Breda, An SEIR epidemic model with constant latency time and infectious period,, Math. Biosci. Eng., 8 (2011), 931. doi: 10.3934/mbe.2011.8.931. Google Scholar

[4]

D. Breda, "Numerical Computation of Characteristic Roots for Delay Differential Equations,", Ph.D thesis, (2004). Google Scholar

[5]

D. Breda, Nonautonomous delay differential equations in Hilbert spaces and Lyapunov exponents,, Diff. Int. Equations, 23 (2010), 935. Google Scholar

[6]

D. Breda, C. Cusulin, M. Iannelli, S. Maset and R. Vermiglio, Stability analysis of age-structured population equations by pseudospectral differencing methods,, J. Math. Biol., 54 (2007), 701. doi: 10.1007/s00285-006-0064-4. Google Scholar

[7]

D. Breda, M. Iannelli, S. Maset and R. Vermiglio, Stability analysis of the Gurtin-MacCamy model,, SIAM J. Numer. Anal., 46 (2008), 980. doi: 10.1137/070685658. Google Scholar

[8]

D. Breda, S. Maset and R. Vermiglio, Pseudospectral differencing methods for characteristic roots of delay differential equations,, SIAM J. Sci. Comput., 27 (2005), 482. doi: 10.1137/030601600. Google Scholar

[9]

D. Breda, S. Maset and R. Vermiglio, Pseudospectral approximation of eigenvalues of derivative operators with non-local boundary conditions,, Appl. Numer. Math., 56 (2006), 318. doi: 10.1016/j.apnum.2005.04.011. Google Scholar

[10]

D. Breda, S. Maset and R. Vermiglio, Numerical approximation of characteristic values of partial retarded functional differential equations,, Numer. Math., 113 (2009), 181. doi: 10.1007/s00211-009-0233-7. Google Scholar

[11]

D. Breda, S. Maset and R. Vermiglio, Approximation of eigenvalues of evolution operators for linear retarded functional differential equations,, 2012, (). Google Scholar

[12]

D. Breda, S. Maset and R. Vermiglio, Computing eigenvalues of Gurtin-MacCamy models with diffusion,, IMA J. Numer. Anal., (2011). doi: 10.1093/imanum/drr004. Google Scholar

[13]

D. Breda and D. Visetti, Existence, multiplicity and stability of endemic states for an age-structured S-I epidemic model,, Math. Biosci., 235 (2012), 19. doi: 10.1016/j.mbs.2011.10.004. Google Scholar

[14]

C. Chicone and Y. Latushkin, "Evolution Semigroups in Dynamical Systems and Differential Equations,", Mathematical Surveys and Monographs, 70 (1999). Google Scholar

[15]

O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, "Delay Equations. Functional, Complex, and Nonlinear Analysis,", American Mathematical Sciences, 110 (1995). Google Scholar

[16]

K. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations,", Graduate Texts in Mathematics, 194 (1999). Google Scholar

[17]

A. Franceschetti, A. Pugliese and D. Breda, Multiple endemic states in age-structured SIR epidemic models,, 2012, (). Google Scholar

[18]

W. J. F. Govaerts, "Numerical Methods for Bifurcations of Dynamical Equilibria,", SIAM, (2000). doi: 10.1137/1.9780898719543. Google Scholar

[19]

D. Greenhalgh, Threshold and stability results for an epidemic model with an age-structured meeting rate,, IMA J. Math. Appl. Med. Biol., 5 (1988), 81. doi: 10.1093/imammb/5.2.81. Google Scholar

[20]

M. E. Gurtin and R. C. MacCamy, Non-linear age-dependent population dynamics,, Archiv. Rat. Mech. Anal., 54 (1974), 281. doi: 10.1007/BF00250793. Google Scholar

[21]

M. Iannelli, "Mathematical Theory of Age-Structured Population Dynamics,", Applied Mathematics Monographs (C.N.R.), (1994). Google Scholar

[22]

H. Inaba, Threshold and stability results for an age-structured epidemic model,, J. Math. Biol., 28 (1990), 411. doi: 10.1007/BF00178326. Google Scholar

[23]

Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory," Second edition,, Applied Mathematical Sciences, 112 (1998). Google Scholar

[24]

S. Liu, E. Beretta and D. Breda, Predator-prey model of Beddington-DeAngelis type with maturation and gestation delays,, Nonlinear Anal. Real World Appl., 11 (2010), 4072. doi: 10.1016/j.nonrwa.2010.03.013. Google Scholar

[25]

A. Lyapunov, "Problém Géneral de la Stabilité du Mouvement,", Annals of Mathematics Studies, 17 (1949). Google Scholar

[26]

R. M. May and R. M. Anderson, Endemic infections in growing populations,, Mathematical Biosciences, 77 (1985), 141. doi: 10.1016/0025-5564(85)90093-8. Google Scholar

[27]

I. Mazzer, "Un Modello per la Dinamica di Più Popolazioni: Esistenza, Unicitàe Approssimazione Numerica della Soluzione,", Master's thesis, (2009). Google Scholar

[28]

L. N. Trefethen, "Spectral Methods in MATLAB,", Software, 10 (2000). Google Scholar

[29]

J. H. Wilkinson, The perfidious polynomial,, in, 24 (1984), 1. Google Scholar

show all references

References:
[1]

E. L. Allgower and K. Georg, "Introduction to Numerical Continuation Methods," Reprint of the 1990 edition [Springer-Verlag, Berlin; MR1059455 (92a:65165)], Classics in Applied Mathematics, 45,, SIAM, (2003). Google Scholar

[2]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control,", Oxford University Press, (1991). Google Scholar

[3]

E. Beretta and D. Breda, An SEIR epidemic model with constant latency time and infectious period,, Math. Biosci. Eng., 8 (2011), 931. doi: 10.3934/mbe.2011.8.931. Google Scholar

[4]

D. Breda, "Numerical Computation of Characteristic Roots for Delay Differential Equations,", Ph.D thesis, (2004). Google Scholar

[5]

D. Breda, Nonautonomous delay differential equations in Hilbert spaces and Lyapunov exponents,, Diff. Int. Equations, 23 (2010), 935. Google Scholar

[6]

D. Breda, C. Cusulin, M. Iannelli, S. Maset and R. Vermiglio, Stability analysis of age-structured population equations by pseudospectral differencing methods,, J. Math. Biol., 54 (2007), 701. doi: 10.1007/s00285-006-0064-4. Google Scholar

[7]

D. Breda, M. Iannelli, S. Maset and R. Vermiglio, Stability analysis of the Gurtin-MacCamy model,, SIAM J. Numer. Anal., 46 (2008), 980. doi: 10.1137/070685658. Google Scholar

[8]

D. Breda, S. Maset and R. Vermiglio, Pseudospectral differencing methods for characteristic roots of delay differential equations,, SIAM J. Sci. Comput., 27 (2005), 482. doi: 10.1137/030601600. Google Scholar

[9]

D. Breda, S. Maset and R. Vermiglio, Pseudospectral approximation of eigenvalues of derivative operators with non-local boundary conditions,, Appl. Numer. Math., 56 (2006), 318. doi: 10.1016/j.apnum.2005.04.011. Google Scholar

[10]

D. Breda, S. Maset and R. Vermiglio, Numerical approximation of characteristic values of partial retarded functional differential equations,, Numer. Math., 113 (2009), 181. doi: 10.1007/s00211-009-0233-7. Google Scholar

[11]

D. Breda, S. Maset and R. Vermiglio, Approximation of eigenvalues of evolution operators for linear retarded functional differential equations,, 2012, (). Google Scholar

[12]

D. Breda, S. Maset and R. Vermiglio, Computing eigenvalues of Gurtin-MacCamy models with diffusion,, IMA J. Numer. Anal., (2011). doi: 10.1093/imanum/drr004. Google Scholar

[13]

D. Breda and D. Visetti, Existence, multiplicity and stability of endemic states for an age-structured S-I epidemic model,, Math. Biosci., 235 (2012), 19. doi: 10.1016/j.mbs.2011.10.004. Google Scholar

[14]

C. Chicone and Y. Latushkin, "Evolution Semigroups in Dynamical Systems and Differential Equations,", Mathematical Surveys and Monographs, 70 (1999). Google Scholar

[15]

O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, "Delay Equations. Functional, Complex, and Nonlinear Analysis,", American Mathematical Sciences, 110 (1995). Google Scholar

[16]

K. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations,", Graduate Texts in Mathematics, 194 (1999). Google Scholar

[17]

A. Franceschetti, A. Pugliese and D. Breda, Multiple endemic states in age-structured SIR epidemic models,, 2012, (). Google Scholar

[18]

W. J. F. Govaerts, "Numerical Methods for Bifurcations of Dynamical Equilibria,", SIAM, (2000). doi: 10.1137/1.9780898719543. Google Scholar

[19]

D. Greenhalgh, Threshold and stability results for an epidemic model with an age-structured meeting rate,, IMA J. Math. Appl. Med. Biol., 5 (1988), 81. doi: 10.1093/imammb/5.2.81. Google Scholar

[20]

M. E. Gurtin and R. C. MacCamy, Non-linear age-dependent population dynamics,, Archiv. Rat. Mech. Anal., 54 (1974), 281. doi: 10.1007/BF00250793. Google Scholar

[21]

M. Iannelli, "Mathematical Theory of Age-Structured Population Dynamics,", Applied Mathematics Monographs (C.N.R.), (1994). Google Scholar

[22]

H. Inaba, Threshold and stability results for an age-structured epidemic model,, J. Math. Biol., 28 (1990), 411. doi: 10.1007/BF00178326. Google Scholar

[23]

Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory," Second edition,, Applied Mathematical Sciences, 112 (1998). Google Scholar

[24]

S. Liu, E. Beretta and D. Breda, Predator-prey model of Beddington-DeAngelis type with maturation and gestation delays,, Nonlinear Anal. Real World Appl., 11 (2010), 4072. doi: 10.1016/j.nonrwa.2010.03.013. Google Scholar

[25]

A. Lyapunov, "Problém Géneral de la Stabilité du Mouvement,", Annals of Mathematics Studies, 17 (1949). Google Scholar

[26]

R. M. May and R. M. Anderson, Endemic infections in growing populations,, Mathematical Biosciences, 77 (1985), 141. doi: 10.1016/0025-5564(85)90093-8. Google Scholar

[27]

I. Mazzer, "Un Modello per la Dinamica di Più Popolazioni: Esistenza, Unicitàe Approssimazione Numerica della Soluzione,", Master's thesis, (2009). Google Scholar

[28]

L. N. Trefethen, "Spectral Methods in MATLAB,", Software, 10 (2000). Google Scholar

[29]

J. H. Wilkinson, The perfidious polynomial,, in, 24 (1984), 1. Google Scholar

[1]

Toshikazu Kuniya, Jinliang Wang, Hisashi Inaba. A multi-group SIR epidemic model with age structure. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3515-3550. doi: 10.3934/dcdsb.2016109

[2]

David M. Bortz. Characteristic roots for two-lag linear delay differential equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2409-2422. doi: 10.3934/dcdsb.2016053

[3]

C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008

[4]

Andrey V. Melnik, Andrei Korobeinikov. Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility. Mathematical Biosciences & Engineering, 2013, 10 (2) : 369-378. doi: 10.3934/mbe.2013.10.369

[5]

Jinliang Wang, Xianning Liu, Toshikazu Kuniya, Jingmei Pang. Global stability for multi-group SIR and SEIR epidemic models with age-dependent susceptibility. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2795-2812. doi: 10.3934/dcdsb.2017151

[6]

C. Connell McCluskey. Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes. Mathematical Biosciences & Engineering, 2012, 9 (4) : 819-841. doi: 10.3934/mbe.2012.9.819

[7]

PaweŁ Hitczenko, Georgi S. Medvedev. Stability of equilibria of randomly perturbed maps. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 369-381. doi: 10.3934/dcdsb.2017017

[8]

Andrea Franceschetti, Andrea Pugliese, Dimitri Breda. Multiple endemic states in age-structured $SIR$ epidemic models. Mathematical Biosciences & Engineering, 2012, 9 (3) : 577-599. doi: 10.3934/mbe.2012.9.577

[9]

Hisashi Inaba. Mathematical analysis of an age-structured SIR epidemic model with vertical transmission. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 69-96. doi: 10.3934/dcdsb.2006.6.69

[10]

Fethallah Benmansour, Guillaume Carlier, Gabriel Peyré, Filippo Santambrogio. Numerical approximation of continuous traffic congestion equilibria. Networks & Heterogeneous Media, 2009, 4 (3) : 605-623. doi: 10.3934/nhm.2009.4.605

[11]

Jacek Banasiak, Eddy Kimba Phongi, MirosŁaw Lachowicz. A singularly perturbed SIS model with age structure. Mathematical Biosciences & Engineering, 2013, 10 (3) : 499-521. doi: 10.3934/mbe.2013.10.499

[12]

Annalisa Iuorio, Christian Kuehn, Peter Szmolyan. Geometry and numerical continuation of multiscale orbits in a nonconvex variational problem. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-22. doi: 10.3934/dcdss.2020073

[13]

Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (2) : 347-361. doi: 10.3934/mbe.2010.7.347

[14]

Zhen Jin, Zhien Ma. The stability of an SIR epidemic model with time delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 101-109. doi: 10.3934/mbe.2006.3.101

[15]

Frederic Laurent-Polz, James Montaldi, Mark Roberts. Point vortices on the sphere: Stability of symmetric relative equilibria. Journal of Geometric Mechanics, 2011, 3 (4) : 439-486. doi: 10.3934/jgm.2011.3.439

[16]

Paul Georgescu, Hong Zhang, Daniel Maxin. The global stability of coexisting equilibria for three models of mutualism. Mathematical Biosciences & Engineering, 2016, 13 (1) : 101-118. doi: 10.3934/mbe.2016.13.101

[17]

Sophia R.-J. Jang. Discrete host-parasitoid models with Allee effects and age structure in the host. Mathematical Biosciences & Engineering, 2010, 7 (1) : 67-81. doi: 10.3934/mbe.2010.7.67

[18]

Suxia Zhang, Xiaxia Xu. A mathematical model for hepatitis B with infection-age structure. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1329-1346. doi: 10.3934/dcdsb.2016.21.1329

[19]

Bin-Guo Wang, Wan-Tong Li, Liang Zhang. An almost periodic epidemic model with age structure in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 291-311. doi: 10.3934/dcdsb.2016.21.291

[20]

Yueding Yuan, Zhiming Guo, Moxun Tang. A nonlocal diffusion population model with age structure and Dirichlet boundary condition. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2095-2115. doi: 10.3934/cpaa.2015.14.2095

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]