Advanced Search
Article Contents
Article Contents

Uniqueness of equilibrium states for some partially hyperbolic horseshoes

Abstract Related Papers Cited by
  • In this note, we consider a partially hyperbolic horseshoe and prove uniqueness of equilibrium states for a class of potentials. In particular we obtain that there exists a unique maximal entropy measure.
    Mathematics Subject Classification: Primary: 37D35; Secondary: 37D30.


    \begin{equation} \\ \end{equation}
  • [1]

    J. Alves and V. Araújo, Random perturbations of non-uniformly expanding maps, Astérisque, 286 (2003), 25-62.


    J. Alves, C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math., 140 (2000), 351-398.doi: 10.1007/s002220000057.


    A. Arbieto, C. Matheus and K. Oliveira, Equilibrium states for random non-uniformly expanding maps, Nonlinearity, 17 (2004), 581-593.doi: 10.1088/0951-7715/17/2/013.


    C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. of Math., 115 (2000), 157-193.doi: 10.1007/BF02810585.


    R. Bowen, Periodic points and measures for Axiom A diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971), 377-397.


    R. BowenSome systems with unique equilibrium states, Math. Systems Theory, 8 (1974-1975), 193-202.


    R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414.doi: 10.1090/S0002-9947-1971-0274707-X.


    R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphism," Springer Lecture Notes in Math., 470, 1975.


    R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202.doi: 10.1007/BF01389848.


    H. Bruin, Induced maps, Markov extensions and invariant measures in one-dimensional dynamics, Comm. Math. Phys., 168 (1995), 571-580.doi: 10.1007/BF02101844.


    H. Bruin and G. Keller, Equilibrium states for S-unimodal maps, Ergodic Theory Dynam. Systems, 18 (1998), 765-789.doi: 10.1017/S0143385798108337.


    H. Bruin and M. Todd, Equilibrium states for interval maps: The potential $-t log\|Df\|$, Ann. Sci. École Norm. Sup., 42 (2009), 559-600.


    J. Buzzi, Thermodynamical formalism for piecewise invertible maps: Absolutely continuous invariant measures as equilibrium states, Proc. Sympos. Pure Math., 69 (2001), 749-783.


    J. Buzzi, T. Fisher, M. Sambarino and C. VásquezMaximal entropy measures for certain partially hyperbolic, derived from Anosov systems, Ergodic Theory and Dynamical Systems, to appear.


    J. Buzzi and O. Sarig, Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps, Ergodic Theory Dynam. Systems, 23 (2003), 1383-1400.doi: 10.1017/S0143385703000087.


    L. J. Díaz and T. Fisher, Symbolic extensions for partially hyperbolic diffeomorphisms, Discrete and Continuous Dynamical Systems, 29 (2011), 1419-1441.


    L. J. Díaz, V. Horita, M. Sambarino and I. Rios, Destroying horseshoes via heterodimensional cycles: Generating bifurcations inside homoclinic classes, Ergodic Theory and Dynamical Systems, 29 (2009), 433-474.doi: 10.1017/S0143385708080346.


    Haydn N.T.A. and D. Ruelle, Equivalence of Gibbs and equilibrium states for homeomorphisms satisfying expansiveness and specification, Commun. Math. Phys., 148 (1992), 155-167.doi: 10.1007/BF02102369.


    F. Hofbauer, The topological entropy of a transformation $x\mapsto ax(1-x)$, Monatsh. Math., 90 (1980), 117-141.doi: 10.1007/BF01303262.


    G. Iommi and M. Todd, Natural equilibrium states for multimodal maps, Commun. Math. Phys., 300 (2010), 65-94.doi: 10.1007/s00220-010-1112-x.


    R. Israel, "Convexity in the Theory of Lattice Gases," Princeton University Press, 1979.


    G. Keller, Lifting measures to Markov extensions, Monatsh. Math., 108 (1989), 183-200.


    F. Ledrappier and P. Walters, A relativised variational principle for continuous transformations, J. London Math. Soc., 16 (1977), 568-576.doi: 10.1112/jlms/s2-16.3.568.


    R. Leplaideur, K. Oliveira and I. Rios, Invariant manifolds and equilibrium states for non-uniformly hyperbolic horseshoes, Nonlinearity, 19 (2006), 2667-2694.doi: 10.1088/0951-7715/19/11/009.


    S. E. Newhouse, Continuity properties of entropy, Annals of Mathematics, 129 (1989), 215-235.doi: 10.2307/1971492.


    K. Oliveira, Equilibrium states for non-uniformly expanding maps, Ergodic Theory & Dynamical Systems, 23 (2003), 1891-1905.doi: 10.1017/S0143385703000257.


    Y. Pesin and S. Senti, Equilibrium measures for maps with inducing schemes, Journal of Modern Dynamics, 2 (2008), 397-430.


    V. A. Rohlin, Lectures on the entropy theory of transformations with invariant measure, Russian Math. Surveys, 22 (1967), 3-56.


    D. Ruelle, "Thermodynamic Formalism. The Mathematical Structures of Classical Equilibrium Statistical Mechanics," Encyclopedia of Mathematics and its Applications, Addison-Wesley Publishing Co., Reading, Mass, 5, 1978.


    P. Varandas and M. Viana, Existence, uniqueness and stability of equilibrium states for non-uniformly expanding maps, Annales de l Institut Henri Poincaré. Analyse non Linéaire, 27 (2010), 555-593.


    W. Cowieson and L. S. Young, SRB measures as zero-noise limits, Ergodic Theory Dynamic Systems, 25 (2005), 1115-1138.doi: 10.1017/S0143385704000604.

  • 加载中

Article Metrics

HTML views() PDF downloads(112) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint