\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Uniqueness of equilibrium states for some partially hyperbolic horseshoes

Abstract Related Papers Cited by
  • In this note, we consider a partially hyperbolic horseshoe and prove uniqueness of equilibrium states for a class of potentials. In particular we obtain that there exists a unique maximal entropy measure.
    Mathematics Subject Classification: Primary: 37D35; Secondary: 37D30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Alves and V. Araújo, Random perturbations of non-uniformly expanding maps, Astérisque, 286 (2003), 25-62.

    [2]

    J. Alves, C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math., 140 (2000), 351-398.doi: 10.1007/s002220000057.

    [3]

    A. Arbieto, C. Matheus and K. Oliveira, Equilibrium states for random non-uniformly expanding maps, Nonlinearity, 17 (2004), 581-593.doi: 10.1088/0951-7715/17/2/013.

    [4]

    C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. of Math., 115 (2000), 157-193.doi: 10.1007/BF02810585.

    [5]

    R. Bowen, Periodic points and measures for Axiom A diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971), 377-397.

    [6]

    R. BowenSome systems with unique equilibrium states, Math. Systems Theory, 8 (1974-1975), 193-202.

    [7]

    R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414.doi: 10.1090/S0002-9947-1971-0274707-X.

    [8]

    R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphism," Springer Lecture Notes in Math., 470, 1975.

    [9]

    R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202.doi: 10.1007/BF01389848.

    [10]

    H. Bruin, Induced maps, Markov extensions and invariant measures in one-dimensional dynamics, Comm. Math. Phys., 168 (1995), 571-580.doi: 10.1007/BF02101844.

    [11]

    H. Bruin and G. Keller, Equilibrium states for S-unimodal maps, Ergodic Theory Dynam. Systems, 18 (1998), 765-789.doi: 10.1017/S0143385798108337.

    [12]

    H. Bruin and M. Todd, Equilibrium states for interval maps: The potential $-t log\|Df\|$, Ann. Sci. École Norm. Sup., 42 (2009), 559-600.

    [13]

    J. Buzzi, Thermodynamical formalism for piecewise invertible maps: Absolutely continuous invariant measures as equilibrium states, Proc. Sympos. Pure Math., 69 (2001), 749-783.

    [14]

    J. Buzzi, T. Fisher, M. Sambarino and C. VásquezMaximal entropy measures for certain partially hyperbolic, derived from Anosov systems, Ergodic Theory and Dynamical Systems, to appear.

    [15]

    J. Buzzi and O. Sarig, Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps, Ergodic Theory Dynam. Systems, 23 (2003), 1383-1400.doi: 10.1017/S0143385703000087.

    [16]

    L. J. Díaz and T. Fisher, Symbolic extensions for partially hyperbolic diffeomorphisms, Discrete and Continuous Dynamical Systems, 29 (2011), 1419-1441.

    [17]

    L. J. Díaz, V. Horita, M. Sambarino and I. Rios, Destroying horseshoes via heterodimensional cycles: Generating bifurcations inside homoclinic classes, Ergodic Theory and Dynamical Systems, 29 (2009), 433-474.doi: 10.1017/S0143385708080346.

    [18]

    Haydn N.T.A. and D. Ruelle, Equivalence of Gibbs and equilibrium states for homeomorphisms satisfying expansiveness and specification, Commun. Math. Phys., 148 (1992), 155-167.doi: 10.1007/BF02102369.

    [19]

    F. Hofbauer, The topological entropy of a transformation $x\mapsto ax(1-x)$, Monatsh. Math., 90 (1980), 117-141.doi: 10.1007/BF01303262.

    [20]

    G. Iommi and M. Todd, Natural equilibrium states for multimodal maps, Commun. Math. Phys., 300 (2010), 65-94.doi: 10.1007/s00220-010-1112-x.

    [21]

    R. Israel, "Convexity in the Theory of Lattice Gases," Princeton University Press, 1979.

    [22]

    G. Keller, Lifting measures to Markov extensions, Monatsh. Math., 108 (1989), 183-200.

    [23]

    F. Ledrappier and P. Walters, A relativised variational principle for continuous transformations, J. London Math. Soc., 16 (1977), 568-576.doi: 10.1112/jlms/s2-16.3.568.

    [24]

    R. Leplaideur, K. Oliveira and I. Rios, Invariant manifolds and equilibrium states for non-uniformly hyperbolic horseshoes, Nonlinearity, 19 (2006), 2667-2694.doi: 10.1088/0951-7715/19/11/009.

    [25]

    S. E. Newhouse, Continuity properties of entropy, Annals of Mathematics, 129 (1989), 215-235.doi: 10.2307/1971492.

    [26]

    K. Oliveira, Equilibrium states for non-uniformly expanding maps, Ergodic Theory & Dynamical Systems, 23 (2003), 1891-1905.doi: 10.1017/S0143385703000257.

    [27]

    Y. Pesin and S. Senti, Equilibrium measures for maps with inducing schemes, Journal of Modern Dynamics, 2 (2008), 397-430.

    [28]

    V. A. Rohlin, Lectures on the entropy theory of transformations with invariant measure, Russian Math. Surveys, 22 (1967), 3-56.

    [29]

    D. Ruelle, "Thermodynamic Formalism. The Mathematical Structures of Classical Equilibrium Statistical Mechanics," Encyclopedia of Mathematics and its Applications, Addison-Wesley Publishing Co., Reading, Mass, 5, 1978.

    [30]

    P. Varandas and M. Viana, Existence, uniqueness and stability of equilibrium states for non-uniformly expanding maps, Annales de l Institut Henri Poincaré. Analyse non Linéaire, 27 (2010), 555-593.

    [31]

    W. Cowieson and L. S. Young, SRB measures as zero-noise limits, Ergodic Theory Dynamic Systems, 25 (2005), 1115-1138.doi: 10.1017/S0143385704000604.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(112) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return