• Previous Article
    Stability and stabilization of the constrained runs schemes for equation-free projection to a slow manifold
  • DCDS Home
  • This Issue
  • Next Article
    Dynamics of a delay differential equation with multiple state-dependent delays
August  2012, 32(8): 2729-2757. doi: 10.3934/dcds.2012.32.2729

Type III excitability, slope sensitivity and coincidence detection

1. 

Dynamics and Control, Beihang University, Beijing, China

2. 

Center for Neural Science, New York University, United States

3. 

Center for Neural Science, and Courant Institute of Mathematical Sciences, New York University, United States

Received  May 2011 Revised  July 2011 Published  March 2012

Some neurons in the nervous system do not show repetitive firing for steady currents. For time-varying inputs, they fire once if the input rise is fast enough. This property of phasic firing is known as Type III excitability. Type III excitability has been observed in neurons in the auditory brainstem (MSO), which show strong phase-locking and accurate coincidence detection. In this paper, we consider a Hodgkin-Huxley type model (RM03) that is widely-used for phasic MSO neurons and we compare it with a modification of it, showing tonic behavior. We provide insight into the temporal processing of these neuron models by means of developing and analyzing two reduced models that reproduce qualitatively the properties of the exemplar ones. The geometric and mathematical analysis of the reduced models allows us to detect and quantify relevant features for the temporal computation such as nearness to threshold and a temporal integration window. Our results underscore the importance of Type III excitability for precise coincidence detection.
Citation: Xiangying Meng, Gemma Huguet, John Rinzel. Type III excitability, slope sensitivity and coincidence detection. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2729-2757. doi: 10.3934/dcds.2012.32.2729
References:
[1]

L. R. Bernstein, Auditory processing of interaural timing information: New insights,, J. Neurosci. Res., 66 (2001), 1035. doi: 10.1002/jnr.10103. Google Scholar

[2]

R. Brette and W. Gerstner, Adaptive exponential integrate-and-fire model as an effective description of neuronal activity,, J. Neurophysiol., 94 (2005), 3637. doi: 10.1152/jn.00686.2005. Google Scholar

[3]

H. M. Brew and I. D. Forsythe, Two voltage-dependent K+ conductances with complementary functions in postsynaptic integration at a central auditory synapse,, J. Neurosci., 15 (1995), 8011. Google Scholar

[4]

C. E. Carr and K. M. Macleod, Microseconds matter,, PLoS Biol., 8 (2010). doi: 10.1371/journal.pbio.1000405. Google Scholar

[5]

J. R. Clay, D. Paydarfar and D. B. Forger, A simple modification of the Hodgkin and Huxley equations explains type 3 excitability in squid giant axons,, J. R. Soc. Interface, 5 (2008), 1421. doi: 10.1098/rsif.2008.0166. Google Scholar

[6]

D. L. Cook, P. C. Schwindt, L. A. Grande and W. J. Spain, Synaptic depression in the localization of sound,, Nature, 421 (2003), 66. doi: 10.1038/nature01248. Google Scholar

[7]

M. L. Day, B. Doiron and J. Rinzel, Subthreshold K+ channel dynamics interact with stimulus spectrum to influence temporal coding in an auditory brain stem model,, J. Neurophysiol., 99 (2008), 534. doi: 10.1152/jn.00326.2007. Google Scholar

[8]

R. Dodla, G. Svirskis and J. Rinzel, Well-timed, brief inhibition can promote spiking: Postinhibitory facilitation,, J. Neurophysiol., 95 (2006), 2664. doi: 10.1152/jn.00752.2005. Google Scholar

[9]

R. Fitzhugh, Impulses and physiological states in theoretical models of nerve membrane,, Biophys. J., 1 (1961), 445. doi: 10.1016/S0006-3495(61)86902-6. Google Scholar

[10]

R. FitzHugh, Mathematical models of excitation and propagation in nerve,, in, (1969), 1. Google Scholar

[11]

Y. Gai, B. Doiron, V. Kotak and J. Rinzel, Noise-gated encoding of slow inputs by auditory brain stem neurons with a low-threshold K+ current,, J. Neurophysiol., 102 (2009), 3447. doi: 10.1152/jn.00538.2009. Google Scholar

[12]

Y. Gai, B. Doiron and J. Rinzel, Slope-based stochastic resonance: How noise enables phasic neurons to encode slow signals,, PLoS Comput. Biol., 6 (2010). Google Scholar

[13]

J. M. Goldberg and P. B. Brown, Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: Some physiological mechanisms of sound localization,, J. Neurophysiol., 32 (1969), 613. Google Scholar

[14]

R. Guttman, S. Lewis and J. Rinzel, Control of repetitive firing in squid axon membrane as a model for a neuroneoscillator,, J. Physiol. (Lond.), 305 (1980), 377. Google Scholar

[15]

A. L. Hodgkin, The local electric changes associated with repetitive action in a non-medullated axon,, J. Physiol. (Lond.), 107 (1948), 165. Google Scholar

[16]

Eugene M. Izhikevich, "Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting,", Computational Neuroscience, (2007). Google Scholar

[17]

B. Lindner and A. Longtin, Effect of an exponentially decaying threshold on the firing statistics of a stochastic integrate-and-fire neuron,, J. Theor. Biol., 232 (2005), 505. doi: 10.1016/j.jtbi.2004.08.030. Google Scholar

[18]

Y. H. Liu and X. J. Wang, Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron,, J. Comput. Neurosci., 10 (2001), 25. doi: 10.1023/A:1008916026143. Google Scholar

[19]

P. B. Manis and S. O. Marx, Outward currents in isolated ventral cochlear nucleus neurons,, J. Neurosci., 11 (1991), 2865. Google Scholar

[20]

X. Meng, Q. Lu and J. Rinzel, Control of firing patterns by two transient potassium currents: Leading spike, latency, bistability,, J. Comput. Neurosci., 31 (2010), 117. doi: 10.1007/s10827-010-0297-5. Google Scholar

[21]

X. Y. Meng and J. Rinzel, A two-variable reduction of the Rothman-Manis model for phasic firing,, Abstracts of the Thirty-Fourth Annual Mid-Winter Research Meeting of the Association for Research in Otolaryngology, 34 (2011). Google Scholar

[22]

J. Platkiewicz and R. Brette, A threshold equation for action potential initiation,, PLoS Comput. Biol., 6 (2010). Google Scholar

[23]

S. A. Prescott and Y. De Koninck, Four cell types with distinctive membrane properties and morphologies in lamina I of the spinal dorsal horn of the adult rat,, J. Physiol. (Lond.), 539 (2002), 817. doi: 10.1113/jphysiol.2001.013437. Google Scholar

[24]

S. A. Prescott, Y. De Koninck and T. J. Sejnowski, Biophysical basis for three distinct dynamical mechanisms of action potential initiation,, PLoS Comput. Biol., 4 (2008). Google Scholar

[25]

M. Rathouz and L. Trussell, Characterization of outward currents in neurons of the avian nucleus magnocellularis,, J. Neurophysiol., 80 (1998), 2824. Google Scholar

[26]

A. D. Reyes, E. W. Rubel and W. J. Spain, In vitro analysis of optimal stimuli for phase-locking and time-delayed modulation of firing in avian nucleus laminaris neurons,, J. Neurosci., 16 (1996), 993. Google Scholar

[27]

M. J. Richardson, N. Brunel and V. Hakim, From subthreshold to firing-rate resonance,, J. Neurophysiol., 89 (2003), 2538. doi: 10.1152/jn.00955.2002. Google Scholar

[28]

J. Rinzel, On repetitive activity in nerve,, Fed. Proc., 37 (1978), 2793. Google Scholar

[29]

J. Rinzel, Excitation dynamics: Insights from simplified membrane models,, Fed. Proc., 44 (1985), 2944. Google Scholar

[30]

J. Rinzel and G. B. Ermentrout, Analysis of neural excitability and oscillations,, in, (1998), 251. Google Scholar

[31]

J. Rinzel, D. Terman, X. Wang and B. Ermentrout, Propagating activity patterns in large-scale inhibitory neuronal networks,, Science, 279 (1998), 1351. doi: 10.1126/science.279.5355.1351. Google Scholar

[32]

J. S. Rothman and P. B. Manis, The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons,, J. Neurophysiol., 89 (2003), 3097. doi: 10.1152/jn.00127.2002. Google Scholar

[33]

J. W. Schnupp and C. E. Carr, On hearing with more than one ear: Lessons from evolution,, Nat. Neurosci., 12 (2009), 692. doi: 10.1038/nn.2325. Google Scholar

[34]

L. L. Scott, P. J. Mathews and N. L. Golding, Perisomatic voltage-gated sodium channels actively maintain linear synaptic integration in principal neurons of the medial superior olive,, J. Neurosci., 30 (2010), 2039. doi: 10.1523/JNEUROSCI.2385-09.2010. Google Scholar

[35]

J. P. Segundo and O. Diez Martinez, Dynamic and static hysteresis in crayfish stretch receptors,, Biol. Cybern., 52 (1985), 291. doi: 10.1007/BF00355750. Google Scholar

[36]

S. J. Slee, M. H. Higgs, A. L. Fairhall and W. J. Spain, Two-dimensional time coding in the auditory brainstem,, J. Neurosci., 25 (2005), 9978. doi: 10.1523/JNEUROSCI.2666-05.2005. Google Scholar

[37]

G. Svirskis, V. Kotak, D. H. Sanes and J. Rinzel, Enhancement of signal-to-noise ratio and phase locking for small inputs by a low-threshold outward current in auditory neurons,, J. Neurosci., 22 (2002), 11019. Google Scholar

[38]

G. Svirskis, V. Kotak, D. H. Sanes and J. Rinzel, Sodium along with low-threshold potassium currents enhance coincidence detection of subthreshold noisy signals in MSO neurons,, J. Neurophysiol., 91 (2004), 2465. doi: 10.1152/jn.00717.2003. Google Scholar

[39]

T. Tateno, A. Harsch and H. P. Robinson, Threshold firing frequency-current relationships of neurons in rat somatosensory cortex: Type 1 and type 2 dynamics,, J. Neurophysiol., 92 (2004), 2283. doi: 10.1152/jn.00109.2004. Google Scholar

[40]

X. J. Wang and G. Buzsaki, Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model,, J. Neurosci., 16 (1996), 6402. Google Scholar

show all references

References:
[1]

L. R. Bernstein, Auditory processing of interaural timing information: New insights,, J. Neurosci. Res., 66 (2001), 1035. doi: 10.1002/jnr.10103. Google Scholar

[2]

R. Brette and W. Gerstner, Adaptive exponential integrate-and-fire model as an effective description of neuronal activity,, J. Neurophysiol., 94 (2005), 3637. doi: 10.1152/jn.00686.2005. Google Scholar

[3]

H. M. Brew and I. D. Forsythe, Two voltage-dependent K+ conductances with complementary functions in postsynaptic integration at a central auditory synapse,, J. Neurosci., 15 (1995), 8011. Google Scholar

[4]

C. E. Carr and K. M. Macleod, Microseconds matter,, PLoS Biol., 8 (2010). doi: 10.1371/journal.pbio.1000405. Google Scholar

[5]

J. R. Clay, D. Paydarfar and D. B. Forger, A simple modification of the Hodgkin and Huxley equations explains type 3 excitability in squid giant axons,, J. R. Soc. Interface, 5 (2008), 1421. doi: 10.1098/rsif.2008.0166. Google Scholar

[6]

D. L. Cook, P. C. Schwindt, L. A. Grande and W. J. Spain, Synaptic depression in the localization of sound,, Nature, 421 (2003), 66. doi: 10.1038/nature01248. Google Scholar

[7]

M. L. Day, B. Doiron and J. Rinzel, Subthreshold K+ channel dynamics interact with stimulus spectrum to influence temporal coding in an auditory brain stem model,, J. Neurophysiol., 99 (2008), 534. doi: 10.1152/jn.00326.2007. Google Scholar

[8]

R. Dodla, G. Svirskis and J. Rinzel, Well-timed, brief inhibition can promote spiking: Postinhibitory facilitation,, J. Neurophysiol., 95 (2006), 2664. doi: 10.1152/jn.00752.2005. Google Scholar

[9]

R. Fitzhugh, Impulses and physiological states in theoretical models of nerve membrane,, Biophys. J., 1 (1961), 445. doi: 10.1016/S0006-3495(61)86902-6. Google Scholar

[10]

R. FitzHugh, Mathematical models of excitation and propagation in nerve,, in, (1969), 1. Google Scholar

[11]

Y. Gai, B. Doiron, V. Kotak and J. Rinzel, Noise-gated encoding of slow inputs by auditory brain stem neurons with a low-threshold K+ current,, J. Neurophysiol., 102 (2009), 3447. doi: 10.1152/jn.00538.2009. Google Scholar

[12]

Y. Gai, B. Doiron and J. Rinzel, Slope-based stochastic resonance: How noise enables phasic neurons to encode slow signals,, PLoS Comput. Biol., 6 (2010). Google Scholar

[13]

J. M. Goldberg and P. B. Brown, Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: Some physiological mechanisms of sound localization,, J. Neurophysiol., 32 (1969), 613. Google Scholar

[14]

R. Guttman, S. Lewis and J. Rinzel, Control of repetitive firing in squid axon membrane as a model for a neuroneoscillator,, J. Physiol. (Lond.), 305 (1980), 377. Google Scholar

[15]

A. L. Hodgkin, The local electric changes associated with repetitive action in a non-medullated axon,, J. Physiol. (Lond.), 107 (1948), 165. Google Scholar

[16]

Eugene M. Izhikevich, "Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting,", Computational Neuroscience, (2007). Google Scholar

[17]

B. Lindner and A. Longtin, Effect of an exponentially decaying threshold on the firing statistics of a stochastic integrate-and-fire neuron,, J. Theor. Biol., 232 (2005), 505. doi: 10.1016/j.jtbi.2004.08.030. Google Scholar

[18]

Y. H. Liu and X. J. Wang, Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron,, J. Comput. Neurosci., 10 (2001), 25. doi: 10.1023/A:1008916026143. Google Scholar

[19]

P. B. Manis and S. O. Marx, Outward currents in isolated ventral cochlear nucleus neurons,, J. Neurosci., 11 (1991), 2865. Google Scholar

[20]

X. Meng, Q. Lu and J. Rinzel, Control of firing patterns by two transient potassium currents: Leading spike, latency, bistability,, J. Comput. Neurosci., 31 (2010), 117. doi: 10.1007/s10827-010-0297-5. Google Scholar

[21]

X. Y. Meng and J. Rinzel, A two-variable reduction of the Rothman-Manis model for phasic firing,, Abstracts of the Thirty-Fourth Annual Mid-Winter Research Meeting of the Association for Research in Otolaryngology, 34 (2011). Google Scholar

[22]

J. Platkiewicz and R. Brette, A threshold equation for action potential initiation,, PLoS Comput. Biol., 6 (2010). Google Scholar

[23]

S. A. Prescott and Y. De Koninck, Four cell types with distinctive membrane properties and morphologies in lamina I of the spinal dorsal horn of the adult rat,, J. Physiol. (Lond.), 539 (2002), 817. doi: 10.1113/jphysiol.2001.013437. Google Scholar

[24]

S. A. Prescott, Y. De Koninck and T. J. Sejnowski, Biophysical basis for three distinct dynamical mechanisms of action potential initiation,, PLoS Comput. Biol., 4 (2008). Google Scholar

[25]

M. Rathouz and L. Trussell, Characterization of outward currents in neurons of the avian nucleus magnocellularis,, J. Neurophysiol., 80 (1998), 2824. Google Scholar

[26]

A. D. Reyes, E. W. Rubel and W. J. Spain, In vitro analysis of optimal stimuli for phase-locking and time-delayed modulation of firing in avian nucleus laminaris neurons,, J. Neurosci., 16 (1996), 993. Google Scholar

[27]

M. J. Richardson, N. Brunel and V. Hakim, From subthreshold to firing-rate resonance,, J. Neurophysiol., 89 (2003), 2538. doi: 10.1152/jn.00955.2002. Google Scholar

[28]

J. Rinzel, On repetitive activity in nerve,, Fed. Proc., 37 (1978), 2793. Google Scholar

[29]

J. Rinzel, Excitation dynamics: Insights from simplified membrane models,, Fed. Proc., 44 (1985), 2944. Google Scholar

[30]

J. Rinzel and G. B. Ermentrout, Analysis of neural excitability and oscillations,, in, (1998), 251. Google Scholar

[31]

J. Rinzel, D. Terman, X. Wang and B. Ermentrout, Propagating activity patterns in large-scale inhibitory neuronal networks,, Science, 279 (1998), 1351. doi: 10.1126/science.279.5355.1351. Google Scholar

[32]

J. S. Rothman and P. B. Manis, The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons,, J. Neurophysiol., 89 (2003), 3097. doi: 10.1152/jn.00127.2002. Google Scholar

[33]

J. W. Schnupp and C. E. Carr, On hearing with more than one ear: Lessons from evolution,, Nat. Neurosci., 12 (2009), 692. doi: 10.1038/nn.2325. Google Scholar

[34]

L. L. Scott, P. J. Mathews and N. L. Golding, Perisomatic voltage-gated sodium channels actively maintain linear synaptic integration in principal neurons of the medial superior olive,, J. Neurosci., 30 (2010), 2039. doi: 10.1523/JNEUROSCI.2385-09.2010. Google Scholar

[35]

J. P. Segundo and O. Diez Martinez, Dynamic and static hysteresis in crayfish stretch receptors,, Biol. Cybern., 52 (1985), 291. doi: 10.1007/BF00355750. Google Scholar

[36]

S. J. Slee, M. H. Higgs, A. L. Fairhall and W. J. Spain, Two-dimensional time coding in the auditory brainstem,, J. Neurosci., 25 (2005), 9978. doi: 10.1523/JNEUROSCI.2666-05.2005. Google Scholar

[37]

G. Svirskis, V. Kotak, D. H. Sanes and J. Rinzel, Enhancement of signal-to-noise ratio and phase locking for small inputs by a low-threshold outward current in auditory neurons,, J. Neurosci., 22 (2002), 11019. Google Scholar

[38]

G. Svirskis, V. Kotak, D. H. Sanes and J. Rinzel, Sodium along with low-threshold potassium currents enhance coincidence detection of subthreshold noisy signals in MSO neurons,, J. Neurophysiol., 91 (2004), 2465. doi: 10.1152/jn.00717.2003. Google Scholar

[39]

T. Tateno, A. Harsch and H. P. Robinson, Threshold firing frequency-current relationships of neurons in rat somatosensory cortex: Type 1 and type 2 dynamics,, J. Neurophysiol., 92 (2004), 2283. doi: 10.1152/jn.00109.2004. Google Scholar

[40]

X. J. Wang and G. Buzsaki, Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model,, J. Neurosci., 16 (1996), 6402. Google Scholar

[1]

Alexandre Caboussat, Allison Leonard. Numerical solution and fast-slow decomposition of a population of weakly coupled systems. Conference Publications, 2009, 2009 (Special) : 123-132. doi: 10.3934/proc.2009.2009.123

[2]

Stefan Martignoli, Ruedi Stoop. Phase-locking and Arnold coding in prototypical network topologies. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 145-162. doi: 10.3934/dcdsb.2008.9.145

[3]

Luca Dieci, Cinzia Elia. Smooth to discontinuous systems: A geometric and numerical method for slow-fast dynamics. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2935-2950. doi: 10.3934/dcdsb.2018112

[4]

Timothy J. Lewis. Phase-locking in electrically coupled non-leaky integrate-and-fire neurons. Conference Publications, 2003, 2003 (Special) : 554-562. doi: 10.3934/proc.2003.2003.554

[5]

Xiaoxue Zhao, Zhuchun Li, Xiaoping Xue. Formation, stability and basin of phase-locking for Kuramoto oscillators bidirectionally coupled in a ring. Networks & Heterogeneous Media, 2018, 13 (2) : 323-337. doi: 10.3934/nhm.2018014

[6]

Ryotaro Tsuneki, Shinji Doi, Junko Inoue. Generation of slow phase-locked oscillation and variability of the interspike intervals in globally coupled neuronal oscillators. Mathematical Biosciences & Engineering, 2014, 11 (1) : 125-138. doi: 10.3934/mbe.2014.11.125

[7]

Yong Xu, Bin Pei, Rong Guo. Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2257-2267. doi: 10.3934/dcdsb.2015.20.2257

[8]

Ramon Quintanilla, Reinhard Racke. Stability in thermoelasticity of type III. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 383-400. doi: 10.3934/dcdsb.2003.3.383

[9]

Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure & Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219

[10]

Ilya Schurov. Duck farming on the two-torus: Multiple canard cycles in generic slow-fast systems. Conference Publications, 2011, 2011 (Special) : 1289-1298. doi: 10.3934/proc.2011.2011.1289

[11]

Anatoly Neishtadt, Carles Simó, Dmitry Treschev, Alexei Vasiliev. Periodic orbits and stability islands in chaotic seas created by separatrix crossings in slow-fast systems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 621-650. doi: 10.3934/dcdsb.2008.10.621

[12]

C. Connell Mccluskey. Lyapunov functions for tuberculosis models with fast and slow progression. Mathematical Biosciences & Engineering, 2006, 3 (4) : 603-614. doi: 10.3934/mbe.2006.3.603

[13]

Zhuangyi Liu, Ramón Quintanilla. Energy decay rate of a mixed type II and type III thermoelastic system. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1433-1444. doi: 10.3934/dcdsb.2010.14.1433

[14]

Jie Xu, Yu Miao, Jicheng Liu. Strong averaging principle for slow-fast SPDEs with Poisson random measures. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2233-2256. doi: 10.3934/dcdsb.2015.20.2233

[15]

Alexandre Vidal. Periodic orbits of tritrophic slow-fast system and double homoclinic bifurcations. Conference Publications, 2007, 2007 (Special) : 1021-1030. doi: 10.3934/proc.2007.2007.1021

[16]

Renato Huzak. Cyclicity of the origin in slow-fast codimension 3 saddle and elliptic bifurcations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 171-215. doi: 10.3934/dcds.2016.36.171

[17]

Chunhua Jin. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1675-1688. doi: 10.3934/dcdsb.2018069

[18]

Ken Shirakawa. Stability analysis for phase field systems associated with crystalline-type energies. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 483-504. doi: 10.3934/dcdss.2011.4.483

[19]

Shigeki Akiyama. Strong coincidence and overlap coincidence. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5223-5230. doi: 10.3934/dcds.2016027

[20]

Ramon Quintanilla. Structural stability and continuous dependence of solutions of thermoelasticity of type III. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 463-470. doi: 10.3934/dcdsb.2001.1.463

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (18)

Other articles
by authors

[Back to Top]