Citation: |
[1] |
G. Browning and H.-O. Kreiss, Problems with different time scales for nonlinear partial differential equations, SIAM J. Appl. Math., 42 (1982), 704-718.doi: 10.1137/0142049. |
[2] |
M. S. Calder and D. Siegel, Properties of the Michaelis-Menten mechanism in phase space, J. Math. Anal. Appl., 339 (2008), 1044-1064.doi: 10.1016/j.jmaa.2007.06.078. |
[3] |
A. Ciliberto, F. Capuani and J. J. Tyson, Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation, PLoS Comp. Biol., 3 (2007), 463-472. |
[4] |
J. R. Dormand and P. J. Prince, A family of embedded Runge-Kutta formulae, J. Comput. Appl. Math., 6 (1980), 19-26.doi: 10.1016/0771-050X(80)90013-3. |
[5] |
C. W. Gear, I. G. Kevrekidis and C. Theodoropoulos, "Coarse" integration/bifurcation analysis via microscopic simulators: Micro-Galerkin methods, Comp. Chem. Eng., 26 (2002), 941-963.doi: 10.1016/S0098-1354(02)00020-0. |
[6] |
C. W. Gear, T. J. Kaper, I. G. Kevrekidis and A. Zagaris, Projecting to a slow manifold: Singularly perturbed systems and legacy codes, SIAM J. Appl. Dyn. Syst., 4 (2005), 711-732.doi: 10.1137/040608295. |
[7] |
C. W. Gear and I. G. Kevrekidis, Projective methods for stiff differential equations: Problems with gaps in their eigenvalue spectrum, SIAM J. Sci. Comp., 24 (2003), 1091-1106.doi: 10.1137/S1064827501388157. |
[8] |
A. Goldbeter and D. E. Koshland, An amplified sensitivity arising from covalent modification in biological systems, PNAS U.S.A., 78 (1981), 6840-6844. |
[9] |
G. H. Golub and C. F. van Loan, "Matrix Computations,'' 3rd edition, Johns Hopkins Studies in the Mathematical Sciences, John Hopkins University Press, Baltimore, MD, 1996. |
[10] |
H. M. Härdin, A. Zagaris, K. Kraab and H. V. Westerhoff, Simplified yet highly accurate enzyme kinetics for cases of low substrate concentrations, FEBS J., 276 (2009), 5491-5506.doi: 10.1111/j.1742-4658.2009.07233.x. |
[11] |
H. M. Härdin, A. Zagaris and H. V. Westerhoff, Relaxation behavior in reactive protein networks as instantiated in the phosphotransferase system, submitted, 2011. |
[12] |
J. M. Hyman, Patch dynamics for multiscale problems, Comp. Sci. Eng., 7 (2005), 47-53.doi: 10.1109/MCSE.2005.57. |
[13] |
C. K. R. T. Jones, Geometric singular perturbation theory, in "Dynamical Systems" (Montecatini Terme, 1994) (ed. L. Arnold), Lecture Notes in Mathematics, 1609, Springer, Berlin, (1995), 44-118. |
[14] |
C. T. Kelley, "Iterative Methods for Linear and Nonlinear Equations,'' With separately available software, Frontiers In Applied Mathematics, 16, SIAM, Philadelphia, PA, 1995. |
[15] |
I. G. Kevrekidis, C. W. Gear, J. M. Hyman, P. G. Kevrekidis, O. Runborg and C. Theodoropoulos, Equation-free, coarse-grained multiscale computation: Enabling microscopic simulators to perform system-level analysis, Comm. Math. Sci., 1 (2003), 715-762. |
[16] |
H.-O. Kreiss, Problems with different time scales for ordinary differential equations, SIAM J. Numer. Anal., 16 (1979), 980-998.doi: 10.1137/0716072. |
[17] |
H.-O. Kreiss, Problems with different time scales, in "Multiple Time Scales'' (eds. J. H. Brackbill and B. I. Cohen), Comput. Tech., 3, Academic Press, Orlando, FL, (1985), 29-57. |
[18] |
A. Kumar and K. Josić, Reduced models of networks of coupled enzymatic reactions, J. Theor. Biol., 278 (2011), 87-106.doi: 10.1016/j.jtbi.2011.02.025. |
[19] |
E. N. Lorenz, Attractor sets and quasigeostrophic equilibrium, J. Atmos. Sci., 37 (1980), 1685-1699.doi: 10.1175/1520-0469(1980)037<1685:ASAQGE>2.0.CO;2. |
[20] |
R. E. O'Malley, Jr., "Singular Perturbation Methods for Ordinary Differential Equations,'' Applied Mathematical Sciences, 89, Springer-Verlag, New York, 1991. |
[21] |
J. Murdock, "Normal Forms and Unfoldings for Local Dynamical Systems,'' Springer Monographs in Mathematics, Springer-Verlag, New York, 2003. |
[22] |
Z. Ren, S. B. Pope, A. Vladimirsky and J. M. Guckenheimer, The invariant constrained equilibrium edge preimage curve method for the dimension reduction of chemical kinetics, J. Chem. Phys., 124 (2006) 114111.doi: 10.1063/1.2177243. |
[23] |
G. Samaey, I. G. Kevrekidis and D. Roose, Patch dynamics with buffers for homogenization problems, J. Comp. Phys., 213 (2006), 264-287.doi: 10.1016/j.jcp.2005.08.010. |
[24] |
G. M. Shroff and H. B. Keller, Stabilization of unstable procedures: The recursive projection method, SIAM J. Numer. Anal., 30 (1993), 1099-1120.doi: 10.1137/0730057. |
[25] |
L. F. Shampine and M. W. Reichelt, The MATLAB ODE suite, SIAM J. Sci. Comp., 18 (1997), 1-22.doi: 10.1137/S1064827594276424. |
[26] |
C. Vandekerckhove, I. G. Kevrekidis and D. Roose, An efficient Newton-Krylov implementation of the constrained runs scheme for Initializing on a slow manifold, J. Sci. Comput., 39 (2009), 167-188.doi: 10.1007/s10915-008-9256-y. |
[27] |
A. Zagaris, H. G. Kaper and T. J. Kaper, Two perspectives on reduction of ordinary differential equations, Mathematische Nachrichten, 278 (2005), 1629-1642.doi: 10.1002/mana.200410328. |
[28] |
A. Zagaris, C. W. Gear, T. J. Kaper and I. G. Kevrekidis, Analysis of the accuracy and convergence of equation-free projection to a slow manifold, M2AN Math. Model. Num. Anal., 43 (2009), 757-784.doi: 10.1051/m2an/2009026. |
[29] |
A. Zagaris, "Analysis of Reduction Methods for Multiscale Problems,'' Ph.D thesis, Boston University, 2005. |