August  2012, 32(8): 2805-2823. doi: 10.3934/dcds.2012.32.2805

The singular limit of a Hopf bifurcation

1. 

Mathematics Department, Cornell University, Ithaca, NY 14853

2. 

Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland 1142

Received  June 2011 Revised  November 2011 Published  March 2012

Hopf bifurcation in systems with multiple time scales takes several forms, depending upon whether the bifurcation occurs in fast directions, slow directions or a mixture of these two. Hopf bifurcation in fast directions is influenced by the singular limit of the fast time scale, that is, when the ratio $\epsilon$ of the slowest and fastest time scales goes to zero. The bifurcations of the full slow-fast system persist in the layer equations obtained from this singular limit. However, the Hopf bifurcation of the layer equations does not necessarily have the same criticality as the corresponding Hopf bifurcation of the full slow-fast system, even in the limit $\epsilon \to 0$ when the two bifurcations occur at the same point. We investigate this situation by presenting a simple slow-fast system that is amenable to a complete analysis of its bifurcation diagram. In this model, the family of periodic orbits that emanates from the Hopf bifurcation accumulates onto the corresponding family of the layer equations in the limit as $\epsilon \to 0$; furthermore, the stability of the orbits is dictated by that of the layer equation. We prove that a torus bifurcation occurs $O(\epsilon)$ near the Hopf bifurcation of the full system when the criticality of the two Hopf bifurcations is different.
Citation: John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805
References:
[1]

D. Barkley, Slow manifolds and mixed-mode oscillations in the Belousov-Zhabotinskii reaction,, J. Chem. Phys., 89 (1998), 5547.  doi: 10.1063/1.455561.  Google Scholar

[2]

B. Braaksma, Singular Hopf bifurcation in systems with fast and slow variables,, J. Nonlin. Sci., 8 (1998), 457.  doi: 10.1007/s003329900058.  Google Scholar

[3]

M. Desroches, B. Krauskopf and H. M. Osinga, The geometry of slow manifolds near a folded node,, SIAM J. Appl. Dyn. Syst., 7 (2008), 1131.  doi: 10.1137/070708810.  Google Scholar

[4]

A. Dhooge, W. Govaerts and Yu. A. Kuznetsov, MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs,, ACM Trans. Math. Software, 29 (2003), 141.  doi: 10.1145/779359.779362.  Google Scholar

[5]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,'', 2nd edition, 42 (1986).   Google Scholar

[6]

E. Hairer, S. P. Nørsett and G. Wanner, "Solving Ordinary Differential Equations. I. Nonstiff Problems,", 2nd edition, 8 (1993).   Google Scholar

[7]

J. Hindmarsh and M. Rose, A model of neuronal bursting using three coupled first order differential equations,, Proc. R. Soc. London B, 221 (1984), 87.  doi: 10.1098/rspb.1984.0024.  Google Scholar

[8]

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve,, J. Physiol. (London), 117 (1952), 205.   Google Scholar

[9]

F. C. Hoppensteadt and E. M. Izhikevich, "Weakly Connected Neural Networks,'', Applied Mathematical Sciences, 126 (1997).   Google Scholar

[10]

E. M. Izhikevich, "Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting,'', Computational Neuroscience, (2007).   Google Scholar

[11]

C. K. R. T. Jones, Geometric singular perturbation theory,, in, 1609 (1995), 44.   Google Scholar

[12]

J. Keener and J. Sneyd, "Mathematical Physiology,", 2nd edition, 8 (2008).   Google Scholar

[13]

B. Krauskopf, K. R. Schneider, J. Sieber, S. M. Wieczorek and M. Wolfrum, Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems,, Optics Communications, 215 (2003), 367.  doi: 10.1016/S0030-4018(02)02239-3.  Google Scholar

[14]

Yu. A. Kuznetsov, "Elements of Applied Bifurcation Theory,'', 3rd edition, 112 (2004).   Google Scholar

[15]

H. M. Osinga, A. Sherman and K. T. Tsaneva-Atanasova, Cross-currents between biology and mathematics: the codimension of pseudo-plateau bursting,, Discrete and Continuous Dynamical Systems - Series A, 32 (2012), 2853.   Google Scholar

[16]

H. M. Osinga and K. T. Tsaneva-Atanasova, Dynamics of plateau bursting depending on the location of its equilibrium,, J. Neuroendocrinology, 22 (2010), 1301.  doi: 10.1111/j.1365-2826.2010.02083.x.  Google Scholar

[17]

B. van der Pol, A theory of the amplitude of free and forced triode vibrations,, Radio Review, 1 (1920), 701.   Google Scholar

[18]

B. van der Pol, On relaxation oscillations,, Philosophical Magazine, 7 (1926), 978.   Google Scholar

[19]

J. Rinzel, A formal classification of bursting mechanisms in excitable systems,, in, (1987), 1578.   Google Scholar

[20]

H. G. Rotstein, T. Oppermann, J. A. White and N. Kopell, The dynamic structure underlying subthreshold oscillatory activity and the onset of spikes in a model of medial entorhinal cortex stellate cells,, J. Comput. Neurosci., 21 (2006), 271.  doi: 10.1007/s10827-006-8096-8.  Google Scholar

[21]

A. Shilnikov and M. Kolomiets, Methods of the qualitative theory for the Hindmarsh-Rose model: A case study. A tutorial,, Int. J. Bifurcat. Chaos Appl. Sci. Engrg., 18 (2008), 2141.  doi: 10.1142/S0218127408021634.  Google Scholar

[22]

K. T. Tsaneva-Atanasova, H. M. Osinga, T. Rieß, and A. Sherman, Full system bifurcation analysis of endocrine bursting models,, J. Theoretical Biology, 264 (2010), 1133.  doi: 10.1016/j.jtbi.2010.03.030.  Google Scholar

[23]

W. Zhang, V. Kirk, J. Sneyd and M. Wechselberger, Changes in the criticality of Hopf bifurcations due to certain model reduction techniques in systems with multiple timescales,, The Journal of Mathematical Neuroscience, 1 (2011).  doi: 10.1186/2190-8567-1-9.  Google Scholar

show all references

References:
[1]

D. Barkley, Slow manifolds and mixed-mode oscillations in the Belousov-Zhabotinskii reaction,, J. Chem. Phys., 89 (1998), 5547.  doi: 10.1063/1.455561.  Google Scholar

[2]

B. Braaksma, Singular Hopf bifurcation in systems with fast and slow variables,, J. Nonlin. Sci., 8 (1998), 457.  doi: 10.1007/s003329900058.  Google Scholar

[3]

M. Desroches, B. Krauskopf and H. M. Osinga, The geometry of slow manifolds near a folded node,, SIAM J. Appl. Dyn. Syst., 7 (2008), 1131.  doi: 10.1137/070708810.  Google Scholar

[4]

A. Dhooge, W. Govaerts and Yu. A. Kuznetsov, MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs,, ACM Trans. Math. Software, 29 (2003), 141.  doi: 10.1145/779359.779362.  Google Scholar

[5]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,'', 2nd edition, 42 (1986).   Google Scholar

[6]

E. Hairer, S. P. Nørsett and G. Wanner, "Solving Ordinary Differential Equations. I. Nonstiff Problems,", 2nd edition, 8 (1993).   Google Scholar

[7]

J. Hindmarsh and M. Rose, A model of neuronal bursting using three coupled first order differential equations,, Proc. R. Soc. London B, 221 (1984), 87.  doi: 10.1098/rspb.1984.0024.  Google Scholar

[8]

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve,, J. Physiol. (London), 117 (1952), 205.   Google Scholar

[9]

F. C. Hoppensteadt and E. M. Izhikevich, "Weakly Connected Neural Networks,'', Applied Mathematical Sciences, 126 (1997).   Google Scholar

[10]

E. M. Izhikevich, "Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting,'', Computational Neuroscience, (2007).   Google Scholar

[11]

C. K. R. T. Jones, Geometric singular perturbation theory,, in, 1609 (1995), 44.   Google Scholar

[12]

J. Keener and J. Sneyd, "Mathematical Physiology,", 2nd edition, 8 (2008).   Google Scholar

[13]

B. Krauskopf, K. R. Schneider, J. Sieber, S. M. Wieczorek and M. Wolfrum, Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems,, Optics Communications, 215 (2003), 367.  doi: 10.1016/S0030-4018(02)02239-3.  Google Scholar

[14]

Yu. A. Kuznetsov, "Elements of Applied Bifurcation Theory,'', 3rd edition, 112 (2004).   Google Scholar

[15]

H. M. Osinga, A. Sherman and K. T. Tsaneva-Atanasova, Cross-currents between biology and mathematics: the codimension of pseudo-plateau bursting,, Discrete and Continuous Dynamical Systems - Series A, 32 (2012), 2853.   Google Scholar

[16]

H. M. Osinga and K. T. Tsaneva-Atanasova, Dynamics of plateau bursting depending on the location of its equilibrium,, J. Neuroendocrinology, 22 (2010), 1301.  doi: 10.1111/j.1365-2826.2010.02083.x.  Google Scholar

[17]

B. van der Pol, A theory of the amplitude of free and forced triode vibrations,, Radio Review, 1 (1920), 701.   Google Scholar

[18]

B. van der Pol, On relaxation oscillations,, Philosophical Magazine, 7 (1926), 978.   Google Scholar

[19]

J. Rinzel, A formal classification of bursting mechanisms in excitable systems,, in, (1987), 1578.   Google Scholar

[20]

H. G. Rotstein, T. Oppermann, J. A. White and N. Kopell, The dynamic structure underlying subthreshold oscillatory activity and the onset of spikes in a model of medial entorhinal cortex stellate cells,, J. Comput. Neurosci., 21 (2006), 271.  doi: 10.1007/s10827-006-8096-8.  Google Scholar

[21]

A. Shilnikov and M. Kolomiets, Methods of the qualitative theory for the Hindmarsh-Rose model: A case study. A tutorial,, Int. J. Bifurcat. Chaos Appl. Sci. Engrg., 18 (2008), 2141.  doi: 10.1142/S0218127408021634.  Google Scholar

[22]

K. T. Tsaneva-Atanasova, H. M. Osinga, T. Rieß, and A. Sherman, Full system bifurcation analysis of endocrine bursting models,, J. Theoretical Biology, 264 (2010), 1133.  doi: 10.1016/j.jtbi.2010.03.030.  Google Scholar

[23]

W. Zhang, V. Kirk, J. Sneyd and M. Wechselberger, Changes in the criticality of Hopf bifurcations due to certain model reduction techniques in systems with multiple timescales,, The Journal of Mathematical Neuroscience, 1 (2011).  doi: 10.1186/2190-8567-1-9.  Google Scholar

[1]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[2]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[3]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[4]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

[5]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[6]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[7]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020378

[8]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[9]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[10]

Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077

[11]

Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281

[12]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[13]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[14]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[15]

Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034

[16]

Daniel Kressner, Jonas Latz, Stefano Massei, Elisabeth Ullmann. Certified and fast computations with shallow covariance kernels. Foundations of Data Science, 2020, 2 (4) : 487-512. doi: 10.3934/fods.2020022

[17]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[18]

Björn Augner, Dieter Bothe. The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 533-574. doi: 10.3934/dcdss.2020406

[19]

Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems & Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067

[20]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]