August  2012, 32(8): 2805-2823. doi: 10.3934/dcds.2012.32.2805

The singular limit of a Hopf bifurcation

1. 

Mathematics Department, Cornell University, Ithaca, NY 14853

2. 

Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland 1142

Received  June 2011 Revised  November 2011 Published  March 2012

Hopf bifurcation in systems with multiple time scales takes several forms, depending upon whether the bifurcation occurs in fast directions, slow directions or a mixture of these two. Hopf bifurcation in fast directions is influenced by the singular limit of the fast time scale, that is, when the ratio $\epsilon$ of the slowest and fastest time scales goes to zero. The bifurcations of the full slow-fast system persist in the layer equations obtained from this singular limit. However, the Hopf bifurcation of the layer equations does not necessarily have the same criticality as the corresponding Hopf bifurcation of the full slow-fast system, even in the limit $\epsilon \to 0$ when the two bifurcations occur at the same point. We investigate this situation by presenting a simple slow-fast system that is amenable to a complete analysis of its bifurcation diagram. In this model, the family of periodic orbits that emanates from the Hopf bifurcation accumulates onto the corresponding family of the layer equations in the limit as $\epsilon \to 0$; furthermore, the stability of the orbits is dictated by that of the layer equation. We prove that a torus bifurcation occurs $O(\epsilon)$ near the Hopf bifurcation of the full system when the criticality of the two Hopf bifurcations is different.
Citation: John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805
References:
[1]

D. Barkley, Slow manifolds and mixed-mode oscillations in the Belousov-Zhabotinskii reaction,, J. Chem. Phys., 89 (1998), 5547.  doi: 10.1063/1.455561.  Google Scholar

[2]

B. Braaksma, Singular Hopf bifurcation in systems with fast and slow variables,, J. Nonlin. Sci., 8 (1998), 457.  doi: 10.1007/s003329900058.  Google Scholar

[3]

M. Desroches, B. Krauskopf and H. M. Osinga, The geometry of slow manifolds near a folded node,, SIAM J. Appl. Dyn. Syst., 7 (2008), 1131.  doi: 10.1137/070708810.  Google Scholar

[4]

A. Dhooge, W. Govaerts and Yu. A. Kuznetsov, MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs,, ACM Trans. Math. Software, 29 (2003), 141.  doi: 10.1145/779359.779362.  Google Scholar

[5]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,'', 2nd edition, 42 (1986).   Google Scholar

[6]

E. Hairer, S. P. Nørsett and G. Wanner, "Solving Ordinary Differential Equations. I. Nonstiff Problems,", 2nd edition, 8 (1993).   Google Scholar

[7]

J. Hindmarsh and M. Rose, A model of neuronal bursting using three coupled first order differential equations,, Proc. R. Soc. London B, 221 (1984), 87.  doi: 10.1098/rspb.1984.0024.  Google Scholar

[8]

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve,, J. Physiol. (London), 117 (1952), 205.   Google Scholar

[9]

F. C. Hoppensteadt and E. M. Izhikevich, "Weakly Connected Neural Networks,'', Applied Mathematical Sciences, 126 (1997).   Google Scholar

[10]

E. M. Izhikevich, "Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting,'', Computational Neuroscience, (2007).   Google Scholar

[11]

C. K. R. T. Jones, Geometric singular perturbation theory,, in, 1609 (1995), 44.   Google Scholar

[12]

J. Keener and J. Sneyd, "Mathematical Physiology,", 2nd edition, 8 (2008).   Google Scholar

[13]

B. Krauskopf, K. R. Schneider, J. Sieber, S. M. Wieczorek and M. Wolfrum, Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems,, Optics Communications, 215 (2003), 367.  doi: 10.1016/S0030-4018(02)02239-3.  Google Scholar

[14]

Yu. A. Kuznetsov, "Elements of Applied Bifurcation Theory,'', 3rd edition, 112 (2004).   Google Scholar

[15]

H. M. Osinga, A. Sherman and K. T. Tsaneva-Atanasova, Cross-currents between biology and mathematics: the codimension of pseudo-plateau bursting,, Discrete and Continuous Dynamical Systems - Series A, 32 (2012), 2853.   Google Scholar

[16]

H. M. Osinga and K. T. Tsaneva-Atanasova, Dynamics of plateau bursting depending on the location of its equilibrium,, J. Neuroendocrinology, 22 (2010), 1301.  doi: 10.1111/j.1365-2826.2010.02083.x.  Google Scholar

[17]

B. van der Pol, A theory of the amplitude of free and forced triode vibrations,, Radio Review, 1 (1920), 701.   Google Scholar

[18]

B. van der Pol, On relaxation oscillations,, Philosophical Magazine, 7 (1926), 978.   Google Scholar

[19]

J. Rinzel, A formal classification of bursting mechanisms in excitable systems,, in, (1987), 1578.   Google Scholar

[20]

H. G. Rotstein, T. Oppermann, J. A. White and N. Kopell, The dynamic structure underlying subthreshold oscillatory activity and the onset of spikes in a model of medial entorhinal cortex stellate cells,, J. Comput. Neurosci., 21 (2006), 271.  doi: 10.1007/s10827-006-8096-8.  Google Scholar

[21]

A. Shilnikov and M. Kolomiets, Methods of the qualitative theory for the Hindmarsh-Rose model: A case study. A tutorial,, Int. J. Bifurcat. Chaos Appl. Sci. Engrg., 18 (2008), 2141.  doi: 10.1142/S0218127408021634.  Google Scholar

[22]

K. T. Tsaneva-Atanasova, H. M. Osinga, T. Rieß, and A. Sherman, Full system bifurcation analysis of endocrine bursting models,, J. Theoretical Biology, 264 (2010), 1133.  doi: 10.1016/j.jtbi.2010.03.030.  Google Scholar

[23]

W. Zhang, V. Kirk, J. Sneyd and M. Wechselberger, Changes in the criticality of Hopf bifurcations due to certain model reduction techniques in systems with multiple timescales,, The Journal of Mathematical Neuroscience, 1 (2011).  doi: 10.1186/2190-8567-1-9.  Google Scholar

show all references

References:
[1]

D. Barkley, Slow manifolds and mixed-mode oscillations in the Belousov-Zhabotinskii reaction,, J. Chem. Phys., 89 (1998), 5547.  doi: 10.1063/1.455561.  Google Scholar

[2]

B. Braaksma, Singular Hopf bifurcation in systems with fast and slow variables,, J. Nonlin. Sci., 8 (1998), 457.  doi: 10.1007/s003329900058.  Google Scholar

[3]

M. Desroches, B. Krauskopf and H. M. Osinga, The geometry of slow manifolds near a folded node,, SIAM J. Appl. Dyn. Syst., 7 (2008), 1131.  doi: 10.1137/070708810.  Google Scholar

[4]

A. Dhooge, W. Govaerts and Yu. A. Kuznetsov, MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs,, ACM Trans. Math. Software, 29 (2003), 141.  doi: 10.1145/779359.779362.  Google Scholar

[5]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,'', 2nd edition, 42 (1986).   Google Scholar

[6]

E. Hairer, S. P. Nørsett and G. Wanner, "Solving Ordinary Differential Equations. I. Nonstiff Problems,", 2nd edition, 8 (1993).   Google Scholar

[7]

J. Hindmarsh and M. Rose, A model of neuronal bursting using three coupled first order differential equations,, Proc. R. Soc. London B, 221 (1984), 87.  doi: 10.1098/rspb.1984.0024.  Google Scholar

[8]

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve,, J. Physiol. (London), 117 (1952), 205.   Google Scholar

[9]

F. C. Hoppensteadt and E. M. Izhikevich, "Weakly Connected Neural Networks,'', Applied Mathematical Sciences, 126 (1997).   Google Scholar

[10]

E. M. Izhikevich, "Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting,'', Computational Neuroscience, (2007).   Google Scholar

[11]

C. K. R. T. Jones, Geometric singular perturbation theory,, in, 1609 (1995), 44.   Google Scholar

[12]

J. Keener and J. Sneyd, "Mathematical Physiology,", 2nd edition, 8 (2008).   Google Scholar

[13]

B. Krauskopf, K. R. Schneider, J. Sieber, S. M. Wieczorek and M. Wolfrum, Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems,, Optics Communications, 215 (2003), 367.  doi: 10.1016/S0030-4018(02)02239-3.  Google Scholar

[14]

Yu. A. Kuznetsov, "Elements of Applied Bifurcation Theory,'', 3rd edition, 112 (2004).   Google Scholar

[15]

H. M. Osinga, A. Sherman and K. T. Tsaneva-Atanasova, Cross-currents between biology and mathematics: the codimension of pseudo-plateau bursting,, Discrete and Continuous Dynamical Systems - Series A, 32 (2012), 2853.   Google Scholar

[16]

H. M. Osinga and K. T. Tsaneva-Atanasova, Dynamics of plateau bursting depending on the location of its equilibrium,, J. Neuroendocrinology, 22 (2010), 1301.  doi: 10.1111/j.1365-2826.2010.02083.x.  Google Scholar

[17]

B. van der Pol, A theory of the amplitude of free and forced triode vibrations,, Radio Review, 1 (1920), 701.   Google Scholar

[18]

B. van der Pol, On relaxation oscillations,, Philosophical Magazine, 7 (1926), 978.   Google Scholar

[19]

J. Rinzel, A formal classification of bursting mechanisms in excitable systems,, in, (1987), 1578.   Google Scholar

[20]

H. G. Rotstein, T. Oppermann, J. A. White and N. Kopell, The dynamic structure underlying subthreshold oscillatory activity and the onset of spikes in a model of medial entorhinal cortex stellate cells,, J. Comput. Neurosci., 21 (2006), 271.  doi: 10.1007/s10827-006-8096-8.  Google Scholar

[21]

A. Shilnikov and M. Kolomiets, Methods of the qualitative theory for the Hindmarsh-Rose model: A case study. A tutorial,, Int. J. Bifurcat. Chaos Appl. Sci. Engrg., 18 (2008), 2141.  doi: 10.1142/S0218127408021634.  Google Scholar

[22]

K. T. Tsaneva-Atanasova, H. M. Osinga, T. Rieß, and A. Sherman, Full system bifurcation analysis of endocrine bursting models,, J. Theoretical Biology, 264 (2010), 1133.  doi: 10.1016/j.jtbi.2010.03.030.  Google Scholar

[23]

W. Zhang, V. Kirk, J. Sneyd and M. Wechselberger, Changes in the criticality of Hopf bifurcations due to certain model reduction techniques in systems with multiple timescales,, The Journal of Mathematical Neuroscience, 1 (2011).  doi: 10.1186/2190-8567-1-9.  Google Scholar

[1]

Alexandre Vidal. Periodic orbits of tritrophic slow-fast system and double homoclinic bifurcations. Conference Publications, 2007, 2007 (Special) : 1021-1030. doi: 10.3934/proc.2007.2007.1021

[2]

Ilya Schurov. Duck farming on the two-torus: Multiple canard cycles in generic slow-fast systems. Conference Publications, 2011, 2011 (Special) : 1289-1298. doi: 10.3934/proc.2011.2011.1289

[3]

Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997

[4]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

[5]

Jie Xu, Yu Miao, Jicheng Liu. Strong averaging principle for slow-fast SPDEs with Poisson random measures. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2233-2256. doi: 10.3934/dcdsb.2015.20.2233

[6]

Yong Xu, Bin Pei, Rong Guo. Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2257-2267. doi: 10.3934/dcdsb.2015.20.2257

[7]

Renato Huzak. Cyclicity of the origin in slow-fast codimension 3 saddle and elliptic bifurcations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 171-215. doi: 10.3934/dcds.2016.36.171

[8]

Luca Dieci, Cinzia Elia. Smooth to discontinuous systems: A geometric and numerical method for slow-fast dynamics. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2935-2950. doi: 10.3934/dcdsb.2018112

[9]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[10]

C. Connell Mccluskey. Lyapunov functions for tuberculosis models with fast and slow progression. Mathematical Biosciences & Engineering, 2006, 3 (4) : 603-614. doi: 10.3934/mbe.2006.3.603

[11]

Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152

[12]

Younghae Do, Juan M. Lopez. Slow passage through multiple bifurcation points. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 95-107. doi: 10.3934/dcdsb.2013.18.95

[13]

Anatoly Neishtadt, Carles Simó, Dmitry Treschev, Alexei Vasiliev. Periodic orbits and stability islands in chaotic seas created by separatrix crossings in slow-fast systems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 621-650. doi: 10.3934/dcdsb.2008.10.621

[14]

Renato Huzak, P. De Maesschalck, Freddy Dumortier. Primary birth of canard cycles in slow-fast codimension 3 elliptic bifurcations. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2641-2673. doi: 10.3934/cpaa.2014.13.2641

[15]

Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979

[16]

Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031

[17]

Qi An, Weihua Jiang. Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 487-510. doi: 10.3934/dcdsb.2018183

[18]

Fernando Antoneli, Ana Paula S. Dias, Rui Paiva. Coupled cell networks: Hopf bifurcation and interior symmetry. Conference Publications, 2011, 2011 (Special) : 71-78. doi: 10.3934/proc.2011.2011.71

[19]

R. Ouifki, M. L. Hbid, O. Arino. Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure & Applied Analysis, 2003, 2 (2) : 147-158. doi: 10.3934/cpaa.2003.2.147

[20]

Fatihcan M. Atay. Delayed feedback control near Hopf bifurcation. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 197-205. doi: 10.3934/dcdss.2008.1.197

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]