Citation: |
[1] |
P. Aguirre, E. J. Doedel, B. Krauskopf and H. M. Osinga, Investigating the consequences of global bifurcations for two-dimensional invariant manifolds of vector fields, Discr. Contin. Dynam. Syst., 29 (2011), 1309-1344.doi: 10.3934/dcds.2011.29.1309. |
[2] |
K. T. Alligood, E. Sander and J. A. Yorke, Crossing bifurcations and unstable dimension variability, Phys. Rev. Lett., 96 (2006), 244103.doi: 10.1103/PhysRevLett.96.244103. |
[3] |
A. Atri, J. Amundsen, D. Clapham and J. Sneyd, A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte, Biophysical Journal, 65 (1993), 1727-1739.doi: 10.1016/S0006-3495(93)81191-3. |
[4] |
W.-J. Beyn, The numerical computation of connecting orbits in dynamical systems, IMA J. Numer. Anal., 10 (1990), 379-405.doi: 10.1093/imanum/10.3.379. |
[5] |
W.-J. Beyn, On well-posed problems for connecting orbits in dynamical systems, in "Chaotic Numerics" (Geelong, 1993), Cont. Math., 172, Amer. Math. Soc., Providence, RI, (1994), 131-168. |
[6] |
M. P. Boer, B. W. Kooi and S. A. L. M. Kooijman, Homoclinic and heteroclinic orbits to a cycle in a tri-trophic food chain, J. Math. Biology, 39 (1999), 19-38.doi: 10.1007/s002850050161. |
[7] |
M. P. Boer, B. W. Kooi and S. A. L. M. Kooijman, Multiple attractors and boundary crises in a tri-trophic food chain, Math. Biosciences, 169 (2001), 109-128.doi: 10.1016/S0025-5564(00)00058-4. |
[8] |
C. Bonatti and L. Díaz, Robust heteroclinic cycles and $C^1$-generic dynamics, J. Inst. Math. Jussieu, 7 (2008), 469-525.doi: 10.1017/S1474748008000030. |
[9] |
C. Bonatti, L. Díaz and M. Viana, "Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective,'' Encyclopaedia of Mathematical Sciences, 102, Mathematical Physics, III, Springer-Verlag, Berlin, 2005. |
[10] |
A. R. Champneys, V. Kirk, E. Knobloch, B. E. Oldeman and J. Sneyd, When Shil'nikov Meets Hopf in excitable systems, SIAM J. Appl. Dynam. Syst., 6 (2007), 663-693.doi: 10.1137/070682654. |
[11] |
A. R. Champneys, E. Knobloch, V. Kirk, B. E. Oldeman and J. D. M. Rademacher, Unfolding a tangent equilibrium-to-periodic heteroclinic cycle, SIAM J. App. Dyn. Sys., 8 (2009), 1261-1304.doi: 10.1137/080734923. |
[12] |
A. R. Champneys, Yu. A. Kuznetsov and B. Sandstede, A numerical toolbox for homoclinic bifurcation analysis, Int. J. Bif. Chaos Appl. Sci. Engrg., 6 (1996), 867-887.doi: 10.1142/S0218127496000485. |
[13] |
J. W. Demmel, L. Dieci and M. J. Friedman, Computing connecting orbits via an improved algorithm for continuing invariant subspaces, SIAM J. Sci. Comput., 22 (2000), 81-94.doi: 10.1137/S1064827598344868. |
[14] |
B. Deng and K. Sakamoto, Šil'nikov-Hopf bifurcations, J. Diff. Eqns., 119 (1995), 1-23.doi: 10.1006/jdeq.1995.1082. |
[15] |
F. Dercole, User guide to BPCONT, Dipartimento di Elettronica e Informazione, Politecnico di Milano, 2007. Available at: http://ftp.elet.polimi.it/outgoing/Fabio.Dercole/bpcont/bpcont.tar.gz. |
[16] |
A. Dhooge, W. Govaerts and Yu. A. Kuznetsov, MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Software, 29 (2003), 141-164. Available at: http://www.matcont.ugent.be/.doi: 10.1145/779359.779362. |
[17] |
L. Díaz and J. Rocha, Partially hyperbolic and transitive dynamics generated by heteroclinic cycles, Ergod. Th. Dynam. Sys., 21 (2001), 25-76. |
[18] |
L. Dieci and J. Rebaza, Point-to-periodic and periodic-to-periodic connections, BIT, 44 (2004), 41-62.doi: 10.1023/B:BITN.0000025093.38710.f6. |
[19] |
L. Dieci and J. Rebaza, Erratum: "Point-to-periodic and periodic-to-periodic connections", BIT, 44 (2004), 617-618.doi: 10.1023/B:BITN.0000046846.33609.da. |
[20] |
E. J. Doedel, Lecture notes on numerical analysis of nonlinear equations, in "Numerical Continuation Methods for Dynamical Systems'' (eds. B. Krauskopf, H. M. Osinga and J. Galán-Vioque), Underst. Complex Syst., Springer, Dordrecht, (2007), 1-49. |
[21] |
E. J. Doedel, with major contributions from A. R. Champneys, T. F. Fairgrieve, Yu. A. Kuznetsov, B. E. Oldeman, R. C. Paffenroth, B. Sandstede, X. J. Wang and C. Zhang, AUTO-07P: Continuation and bifurcation software for ordinary differential equations. Available at: http://cmvl.cs.concordia.ca/. |
[22] |
E. J. Doedel and M. J. Friedman, Numerical computation of heteroclinic orbits, J. Comput. Appl. Math., 26 (1989), 155-170.doi: 10.1016/0377-0427(89)90153-2. |
[23] |
E. J. Doedel, B. W. Kooi, Yu. A. Kuznetsov and G. A. K. van Voorn, Continuation of connecting orbits in 3D-ODES: I. Point-to-cycle connections, Int. J. Bifurc. Chaos Appl. Sci. Engrg., 18 (2008), 1889-1903.doi: 10.1142/S0218127408021439. |
[24] |
E. J. Doedel, B. W. Kooi, Yu. A. Kuznetsov and G. A. K. van Voorn, Continuation of connecting orbits in 3D-ODES: II. Cycle-to-cycle connections, Int. J. Bifurc. Chaos Appl. Sci. Engrg., 19 (2009), 159-169.doi: 10.1142/S0218127409022804. |
[25] |
E. J. Doedel, B. Krauskopf and H. M. Osinga, Global bifurcations of the Lorenz manifold, Nonlinearity, 19 (2006), 2947-2972.doi: 10.1088/0951-7715/19/12/013. |
[26] |
J. P. England, B. Krauskopf and H. M. Osinga, Computing one-dimensional global manifolds of Poincaré maps by continuation, SIAM J. Appl. Dynam. Syst., 4 (2005), 1008-1041.doi: 10.1137/05062408X. |
[27] |
M. Falcke, Reading the patterns in living cells: The physics of $Ca^{2+}$ signaling, Adv. Phys., 53 (2004), 255-440.doi: 10.1080/00018730410001703159. |
[28] |
E. Freire, A. J. Rodríguez-Luis, E. Gamero and E. Ponce, A case study for homoclinic chaos in an autonomous electronic circuit: A trip from Takens-Bogdanov to Hopf-Šil'nikov, Physica D, 62 (1993), 230-253.doi: 10.1016/0167-2789(93)90284-8. |
[29] |
M. Friedman and E. J. Doedel, Numerical computation and continuation of invariant manifolds connecting fixed points, SIAM J. Numer. Anal., 28 (1991), 789-808.doi: 10.1137/0728042. |
[30] |
M. Friedman and E. J. Doedel, Computational methods for global analysis of homoclinic and heteroclinic orbits: A case study, J. Dyn. Diff. Eq., 5 (1993), 37-57.doi: 10.1007/BF01063734. |
[31] |
J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,'' 2nd edition, Applied Mathematical Sciences, 42, Springer-Verlag, New York, 1986. |
[32] |
E. Harvey, V. Kirk, J. Sneyd and M. Wechselberger, Multiple time-scales, mixed mode oscillations and canards in intracellular calcium models, J. Nonlinear Science, 21 (2011), 639-683.doi: 10.1007/s00332-011-9096-z. |
[33] |
P. Hirschberg and E. Knobloch, Šil'nikov-Hopf bifurcation, Phys. D, 62 (1993), 202-216.doi: 10.1016/0167-2789(93)90282-6. |
[34] |
A. J. Homburg and B, Sandstede, Homoclinic and heteroclinic bifurcations in vector fields, in "Handbook of Dynamical Systems III'' (eds. H. Broer, F. Takens and B. Hasselblatt), Elsevier, (2010), 379-524. |
[35] |
J. Knobloch, Lin's method for discrete dynamical systems, J. Difference Equations and Applications, 6 (2000), 577-623.doi: 10.1080/10236190008808247. |
[36] |
J. Knobloch, "Lin's Method for Discrete and Continuous Dynamical Systems and Applications,'' Habilitationsschrift, TU Ilmenau, 2004. |
[37] |
J. Knobloch and T. Rieß, Lin's method for heteroclinic chains involving periodic orbits, Nonlinearity, 23 (2010), 23-54.doi: 10.1088/0951-7715/23/1/002. |
[38] |
J. Knobloch, T, Rieß and M. Vielitz, Nonreversible homoclinic snaking, Dynamical Systems, 26 (2011), 335-365. |
[39] |
E. J. Kostelich, I. Kan, C. Grebogi, E. Ott and J. A. Yorke, Unstable dimension variability: A source of nonhyperbolicity in chaotic systems, Physica D, 109 (1997), 81-90.doi: 10.1016/S0167-2789(97)00161-9. |
[40] |
B. Krauskopf and B. E. Oldeman, Bifurcations of global reinjection orbits near a saddle-node Hopf bifurcation, Nonlinearity, 19 (2006), 2149-2167.doi: 10.1088/0951-7715/19/9/010. |
[41] |
B. Krauskopf, H. M. Osinga and J. Galán-Vioque, eds., "Numerical Continuation Methods for Dynamical Systems. Path Following and Boundary Value Problems,'' Understanding Complex Systems, Springer, Dordrecht, 2007. |
[42] |
B. Krauskopf and T. Rieß, A Lin's method approach to finding and continuing heteroclinic orbits connections involving periodic orbits, Nonlinearity, 21 (2008), 1655-1690.doi: 10.1088/0951-7715/21/8/001. |
[43] |
Yu. A. Kuznetsov, "Elements of Applied Bifurcation Theory,'' 3rd edition, Applied Mathematical Sciences, 112, Springer-Verlag, New York, 2004. |
[44] |
Yu. A. Kuznetsov, O. De Feo and S. Rinaldi, Belyakov homoclinic bifurcations in a tritrophic food-chain model, SIAM J. Appl. Math., 62 (2001), 462-487.doi: 10.1137/S0036139900378542. |
[45] |
X.-B. Lin, Using Mel'nikov's method to solve Šil'nikov's problems, Proc. R. Soc. Edinb. Sect. A, 116 (1990), 295-325.doi: 10.1017/S0308210500031528. |
[46] |
B. E. Oldeman, A. R. Champneys and B. Krauskopf, Homoclinic branch switching: A numerical implementation of Lin's method, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 2977-2999.doi: 10.1142/S0218127403008326. |
[47] |
J. Palis, Jr., and W. de Melo, "Geometric Theory of Dynamical Systems. An Introduction,'' Translated from the Portuguese by A. K. Manning, Springer-Verlag, New York-Berlin, 1982.doi: 10.1007/978-1-4612-5703-5. |
[48] |
T. Pampel, Numerical approximation of connecting orbits with asymptotic rate, Numerische Mathematik, 90 (2001), 309-348.doi: 10.1007/s002110100302. |
[49] |
J. D. M. Rademacher, Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit, J. Diff. Eqns., 218 (2005), 390-443.doi: 10.1016/j.jde.2005.03.016. |
[50] |
J. D. M. Rademacher, Lyapunov-Schmidt reduction for unfolding heteroclinic networks of equilibria and periodic orbits with tangencies, J. Diff. Eqns., 249 (2010), 305-348.doi: 10.1016/j.jde.2010.04.007. |
[51] |
T. Rieß, "Using Lin's Method for an Almost Shilnikov Problem,'' Diploma Thesis, TU Ilmenau, 2003. |
[52] |
B. Sandstede, "Verzweigungstheorie Homokliner Verdopplungen,'' Ph.D thesis, University of Stuttgart, 1993. |
[53] |
S. M. Wieczorek and B. Krauskopf, Bifurcations of $n$-homoclinic orbits in optically injected lasers, Nonlinearity, 18 (2005), 1095-1120.doi: 10.1088/0951-7715/18/3/010. |
[54] |
A. C. Yew, Multipulses of nonlinearly-coupled Schrödinger equations, J. Diff. Eqns., 173 (2001), 92-137.doi: 10.1006/jdeq.2000.3922. |
[55] |
W. Zhang, V. Kirk, J. Sneyd and M. Wechselberger, Changes in the criticality of Hopf bifurcations due to certain model reduction techniques in systems with multiple timescales, J. Math. Neuroscience, 1 (2011). |