August  2012, 32(8): 2913-2935. doi: 10.3934/dcds.2012.32.2913

Feed-forward networks, center manifolds, and forcing

1. 

Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43215, United States

2. 

Department of Mathematics, University of Auckland, Auckland 1142, New Zealand

Received  June 2011 Revised  August 2011 Published  March 2012

This paper discusses feed-forward chains near points of synchrony-breaking Hopf bifurcation. We show that at synchrony-breaking bifurcations the center manifold inherits a feed-forward structure and use this structure to provide a simplified proof of the theorem of Elmhirst and Golubitsky that there is a branch of periodic solutions in such bifurcations whose amplitudes grow at the rate of $\lambda^{\frac{1}{6}}$. We also use this center manifold structure to provide a method for classifying the bifurcation diagrams of the forced feed-forward chain where the amplitudes of the periodic responses are plotted as a function of the forcing frequency. The bifurcation diagrams depend on the amplitude of the forcing, the deviation of the system from Hopf bifurcation, and the ratio $\gamma$ of the imaginary part of the cubic term in the normal form of Hopf bifurcation to the real part. These calculations generalize the results of Zhang on the forcing of systems near Hopf bifurcations to three-cell feed-forward chains.
Citation: Martin Golubitsky, Claire Postlethwaite. Feed-forward networks, center manifolds, and forcing. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2913-2935. doi: 10.3934/dcds.2012.32.2913
References:
[1]

N. N. Bogoliubov and Y. A. Mitropolsky, "Asymptotic Methods in the Theory of Non-linear Oscillations,", Translated from the second revised Russian edition, (1961).   Google Scholar

[2]

J. Carr, "Applications of Centre Manifold Theory,", Applied Mathematical Sciences, 35 (1981).   Google Scholar

[3]

T. Elmhirst and M. Golubitsky, Nilpotent Hopf bifurcations in coupled cell systems,, SIAM J. Appl. Dynam. Sys., 5 (2006), 205.  doi: 10.1137/050635559.  Google Scholar

[4]

J.-M. Gambaudo, Perturbation of a Hopf bifurcation by an external time-periodic forcing,, J. Diff. Eqns., 57 (1985), 172.  doi: 10.1016/0022-0396(85)90076-2.  Google Scholar

[5]

M. Golubitsky, M. Nicol and I. Stewart, Some curious phenomena in coupled cell networks,, J. Nonlinear Sci., 14 (2004), 207.  doi: 10.1007/s00332-003-0593-6.  Google Scholar

[6]

M. Golubitsky, C. Postlethwaite, L.-J. Shiau and Y. Zhang, The feed-forward chain as a filter amplifier motif,, in, 3 (2009), 95.   Google Scholar

[7]

M. Golubitsky and D. G. Schaeffer, "Singularities and Groups in Bifurcation Theory,", Vol. I, 51 (1985).   Google Scholar

[8]

M. Golubitsky, I. N. Stewart and D. G. Schaeffer, "Singularities and Groups in Bifurcation Theory,", Vol. II, 69 (1988).   Google Scholar

[9]

N. J. McCullen, T. Mullin and M. Golubitsky, Sensitive signal detection using a feed-forward oscillator network,, Phys. Rev. Lett., 98 (2007).  doi: 10.1103/PhysRevLett.98.254101.  Google Scholar

[10]

Y. Zhang, "Periodic Forcing of a System Near a Hopf Bifurcation Point,", Ph.D Thesis, (2010).   Google Scholar

[11]

Y. Zhang and M. Golubitsky, Periodically forced Hopf bifurcation,, SIAM J. Appl. Dynam. Sys., ().   Google Scholar

show all references

References:
[1]

N. N. Bogoliubov and Y. A. Mitropolsky, "Asymptotic Methods in the Theory of Non-linear Oscillations,", Translated from the second revised Russian edition, (1961).   Google Scholar

[2]

J. Carr, "Applications of Centre Manifold Theory,", Applied Mathematical Sciences, 35 (1981).   Google Scholar

[3]

T. Elmhirst and M. Golubitsky, Nilpotent Hopf bifurcations in coupled cell systems,, SIAM J. Appl. Dynam. Sys., 5 (2006), 205.  doi: 10.1137/050635559.  Google Scholar

[4]

J.-M. Gambaudo, Perturbation of a Hopf bifurcation by an external time-periodic forcing,, J. Diff. Eqns., 57 (1985), 172.  doi: 10.1016/0022-0396(85)90076-2.  Google Scholar

[5]

M. Golubitsky, M. Nicol and I. Stewart, Some curious phenomena in coupled cell networks,, J. Nonlinear Sci., 14 (2004), 207.  doi: 10.1007/s00332-003-0593-6.  Google Scholar

[6]

M. Golubitsky, C. Postlethwaite, L.-J. Shiau and Y. Zhang, The feed-forward chain as a filter amplifier motif,, in, 3 (2009), 95.   Google Scholar

[7]

M. Golubitsky and D. G. Schaeffer, "Singularities and Groups in Bifurcation Theory,", Vol. I, 51 (1985).   Google Scholar

[8]

M. Golubitsky, I. N. Stewart and D. G. Schaeffer, "Singularities and Groups in Bifurcation Theory,", Vol. II, 69 (1988).   Google Scholar

[9]

N. J. McCullen, T. Mullin and M. Golubitsky, Sensitive signal detection using a feed-forward oscillator network,, Phys. Rev. Lett., 98 (2007).  doi: 10.1103/PhysRevLett.98.254101.  Google Scholar

[10]

Y. Zhang, "Periodic Forcing of a System Near a Hopf Bifurcation Point,", Ph.D Thesis, (2010).   Google Scholar

[11]

Y. Zhang and M. Golubitsky, Periodically forced Hopf bifurcation,, SIAM J. Appl. Dynam. Sys., ().   Google Scholar

[1]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[2]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[3]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[4]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[5]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[6]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[7]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]