-
Previous Article
Waves in random neural media
- DCDS Home
- This Issue
-
Next Article
Feed-forward networks, center manifolds, and forcing
Why optimal states recruit fewer reactions in metabolic networks
1. | Department of Physics & Astronomy, Northwestern University, Evanston, IL 60208, United States |
2. | Department of Mathematics, Clarkson University, Potsdam, NY 13699, United States |
3. | Department of Physics & Astronomy and Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, United States |
References:
[1] |
U. Alon, "An Introduction to Systems Biology: Design Principles of Biological Circuits,", Chapman & Hall/CRC Mathematical and Computational Biology Series, (2007).
|
[2] |
A.-L. Barabási and Z. N. Oltvai, Network biology: Understanding the cell's functional organization,, Nat. Rev. Genet., 5 (2004), 101. Google Scholar |
[3] |
S. D. Becker, et al., Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox,, Nat. Protoc., 2 (2007), 727.
doi: 10.1038/nprot.2007.99. |
[4] |
M. J. Best and K. Ritter, "Linear Programming: Active Set Analysis and Computer Programs,", Prentice-Hall, (1985).
|
[5] |
L. M. Blank, L. Kuepfer and U. Sauer, Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast,, Genome Biol., 6 (2005).
doi: 10.1186/gb-2005-6-6-r49. |
[6] |
H. P. J. Bonarius, G. Schmid and J. Tramper, Flux analysis of underdetermined metabolic networks: The quest for the missing constraints,, Trends Biotechnol., 15 (1997), 308.
doi: 10.1016/S0167-7799(97)01067-6. |
[7] |
S. P. Cornelius, J. S. Lee and A. E. Motter, Dispensability of Escherichia coli's latent pathways,, Proc. Natl. Acad. Sci. USA, 108 (2011), 3124.
doi: 10.1073/pnas.1009772108. |
[8] |
N. C. Duarte, et al., Global reconstruction of the human metabolic network based on genomic and bibliomic data,, Proc. Natl. Acad. Sci. USA, 104 (2007), 1777.
doi: 10.1073/pnas.0610772104. |
[9] |
S. S. Fong, A. R. Joyce and B. Ø. Palsson, Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states,, Genome. Res., 15 (2005), 1365.
doi: 10.1101/gr.3832305. |
[10] |
S. S. Fong, A. Nanchen, B. Ø. Palsson and U. Sauer, Latent pathway activation and increased pathway capacity enable Escherichia coli adaptation to loss of key metabolic enzymes,, J. Biol. Chem., 281 (2006), 8024.
doi: 10.1074/jbc.M510016200. |
[11] |
, ILOG CPLEX (Version 10.2.0)., Available from: \url{http://www.ilog.com/products/cplex/}., (). Google Scholar |
[12] |
D. E. Kaufman and R. L. Smith, Direction choice for accelerated convergence in hit-and-run sampling,, Oper. Res., 46 (1998), 84.
doi: 10.1287/opre.46.1.84. |
[13] |
D.-H. Kim and A. E. Motter, Slave nodes and the controllability of metabolic networks,, New J. Phys., 11 (2009).
doi: 10.1088/1367-2630/11/11/113047. |
[14] |
M. V. Kritz, M. T. dos Santos, S. Urrutia and J.-M. Schwartz, Organising metabolic networks: Cycles in flux distributions,, J. Theo. Biol., 265 (2010), 250.
doi: 10.1016/j.jtbi.2010.04.026. |
[15] |
O. L. Mangasarian, Uniqueness of solution in linear programming,, Linear Algebra Appl., 25 (1979), 151.
doi: 10.1016/0024-3795(79)90014-4. |
[16] |
A. E. Motter, Improved network performance via antagonism: From synthetic rescues to multi-drug combinations,, BioEssays, 32 (2010), 236.
doi: 10.1002/bies.200900128. |
[17] |
A. E. Motter, N. Gulbahce, E. Almaas and A.-L. Barabási, Predicting synthetic rescues in metabolic networks,, Mol. Syst. Biol., 4 (2008).
doi: 10.1038/msb.2008.1. |
[18] |
T. Nishikawa, N. Gulbahce and A. E. Motter, Spontaneous reaction silencing in metabolic optimization,, PLoS Comput. Biol., 4 (2008).
doi: 10.1371/journal.pcbi.1000236. |
[19] |
B. Papp, C. Pál and L. D. Hurst, Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast,, Nature, 429 (2004), 661.
doi: 10.1038/nature02636. |
[20] |
B. Ø. Palsson, "Systems Biology: Properties of Reconstructed Networks,", Cambridge University Press, (2006). Google Scholar |
[21] |
E. Ravasz, A. Somera, D. Mongru, Z. Oltvai and A.-L. Barabási, Hierarchical organization of modularity in metabolic networks,, Science, 297 (2002), 1551.
doi: 10.1126/science.1073374. |
[22] |
J. L. Reed, T. D. Vo, C. H. Schilling and B. Ø. Palsson, An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR),, Genome Biol., 4 (2003).
doi: 10.1186/gb-2003-4-9-r54. |
[23] |
W. Rudin, "Real and Complex Analysis,'', Third edition, (1987).
|
[24] |
R. Schuetz, L. Kuepfer and U. Sauer, Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli,, Mol. Syst. Biol., 3 (2007).
doi: 10.1038/msb4100162. |
[25] |
T. Shlomi, T. Benyamini, E. Gottlieb, R. Sharan and E. Ruppin, Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warburg effect,, PLoS Comput. Biol., 7 (2011).
doi: 10.1371/journal.pcbi.1002018. |
[26] |
R. L. Smith, Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions,, Oper. Res., 32 (1984), 1296.
doi: 10.1287/opre.32.6.1296. |
[27] |
V. Spirin and L. A. Mirny, Protein complexes and functional modules in molecular networks,, Proc. Natl. Acad. Sci. USA, 100 (2003), 12123.
doi: 10.1073/pnas.2032324100. |
[28] |
P. Szilágyi, On the uniqueness of the optimal solution in linear programming,, Rev. Anal. Numér. Théor. Approx., 35 (2006), 225.
|
[29] |
A. Varma and B. Ø. Palsson, Metabolic flux balancing: Basic concepts, scientific and practical use,, Nat. Biotechnol., 12 (1994), 994.
doi: 10.1038/nbt1094-994. |
show all references
References:
[1] |
U. Alon, "An Introduction to Systems Biology: Design Principles of Biological Circuits,", Chapman & Hall/CRC Mathematical and Computational Biology Series, (2007).
|
[2] |
A.-L. Barabási and Z. N. Oltvai, Network biology: Understanding the cell's functional organization,, Nat. Rev. Genet., 5 (2004), 101. Google Scholar |
[3] |
S. D. Becker, et al., Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox,, Nat. Protoc., 2 (2007), 727.
doi: 10.1038/nprot.2007.99. |
[4] |
M. J. Best and K. Ritter, "Linear Programming: Active Set Analysis and Computer Programs,", Prentice-Hall, (1985).
|
[5] |
L. M. Blank, L. Kuepfer and U. Sauer, Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast,, Genome Biol., 6 (2005).
doi: 10.1186/gb-2005-6-6-r49. |
[6] |
H. P. J. Bonarius, G. Schmid and J. Tramper, Flux analysis of underdetermined metabolic networks: The quest for the missing constraints,, Trends Biotechnol., 15 (1997), 308.
doi: 10.1016/S0167-7799(97)01067-6. |
[7] |
S. P. Cornelius, J. S. Lee and A. E. Motter, Dispensability of Escherichia coli's latent pathways,, Proc. Natl. Acad. Sci. USA, 108 (2011), 3124.
doi: 10.1073/pnas.1009772108. |
[8] |
N. C. Duarte, et al., Global reconstruction of the human metabolic network based on genomic and bibliomic data,, Proc. Natl. Acad. Sci. USA, 104 (2007), 1777.
doi: 10.1073/pnas.0610772104. |
[9] |
S. S. Fong, A. R. Joyce and B. Ø. Palsson, Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states,, Genome. Res., 15 (2005), 1365.
doi: 10.1101/gr.3832305. |
[10] |
S. S. Fong, A. Nanchen, B. Ø. Palsson and U. Sauer, Latent pathway activation and increased pathway capacity enable Escherichia coli adaptation to loss of key metabolic enzymes,, J. Biol. Chem., 281 (2006), 8024.
doi: 10.1074/jbc.M510016200. |
[11] |
, ILOG CPLEX (Version 10.2.0)., Available from: \url{http://www.ilog.com/products/cplex/}., (). Google Scholar |
[12] |
D. E. Kaufman and R. L. Smith, Direction choice for accelerated convergence in hit-and-run sampling,, Oper. Res., 46 (1998), 84.
doi: 10.1287/opre.46.1.84. |
[13] |
D.-H. Kim and A. E. Motter, Slave nodes and the controllability of metabolic networks,, New J. Phys., 11 (2009).
doi: 10.1088/1367-2630/11/11/113047. |
[14] |
M. V. Kritz, M. T. dos Santos, S. Urrutia and J.-M. Schwartz, Organising metabolic networks: Cycles in flux distributions,, J. Theo. Biol., 265 (2010), 250.
doi: 10.1016/j.jtbi.2010.04.026. |
[15] |
O. L. Mangasarian, Uniqueness of solution in linear programming,, Linear Algebra Appl., 25 (1979), 151.
doi: 10.1016/0024-3795(79)90014-4. |
[16] |
A. E. Motter, Improved network performance via antagonism: From synthetic rescues to multi-drug combinations,, BioEssays, 32 (2010), 236.
doi: 10.1002/bies.200900128. |
[17] |
A. E. Motter, N. Gulbahce, E. Almaas and A.-L. Barabási, Predicting synthetic rescues in metabolic networks,, Mol. Syst. Biol., 4 (2008).
doi: 10.1038/msb.2008.1. |
[18] |
T. Nishikawa, N. Gulbahce and A. E. Motter, Spontaneous reaction silencing in metabolic optimization,, PLoS Comput. Biol., 4 (2008).
doi: 10.1371/journal.pcbi.1000236. |
[19] |
B. Papp, C. Pál and L. D. Hurst, Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast,, Nature, 429 (2004), 661.
doi: 10.1038/nature02636. |
[20] |
B. Ø. Palsson, "Systems Biology: Properties of Reconstructed Networks,", Cambridge University Press, (2006). Google Scholar |
[21] |
E. Ravasz, A. Somera, D. Mongru, Z. Oltvai and A.-L. Barabási, Hierarchical organization of modularity in metabolic networks,, Science, 297 (2002), 1551.
doi: 10.1126/science.1073374. |
[22] |
J. L. Reed, T. D. Vo, C. H. Schilling and B. Ø. Palsson, An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR),, Genome Biol., 4 (2003).
doi: 10.1186/gb-2003-4-9-r54. |
[23] |
W. Rudin, "Real and Complex Analysis,'', Third edition, (1987).
|
[24] |
R. Schuetz, L. Kuepfer and U. Sauer, Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli,, Mol. Syst. Biol., 3 (2007).
doi: 10.1038/msb4100162. |
[25] |
T. Shlomi, T. Benyamini, E. Gottlieb, R. Sharan and E. Ruppin, Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warburg effect,, PLoS Comput. Biol., 7 (2011).
doi: 10.1371/journal.pcbi.1002018. |
[26] |
R. L. Smith, Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions,, Oper. Res., 32 (1984), 1296.
doi: 10.1287/opre.32.6.1296. |
[27] |
V. Spirin and L. A. Mirny, Protein complexes and functional modules in molecular networks,, Proc. Natl. Acad. Sci. USA, 100 (2003), 12123.
doi: 10.1073/pnas.2032324100. |
[28] |
P. Szilágyi, On the uniqueness of the optimal solution in linear programming,, Rev. Anal. Numér. Théor. Approx., 35 (2006), 225.
|
[29] |
A. Varma and B. Ø. Palsson, Metabolic flux balancing: Basic concepts, scientific and practical use,, Nat. Biotechnol., 12 (1994), 994.
doi: 10.1038/nbt1094-994. |
[1] |
Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020176 |
[2] |
Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 |
[3] |
Yongjie Wang, Nan Gao. Some properties for almost cellular algebras. Electronic Research Archive, 2021, 29 (1) : 1681-1689. doi: 10.3934/era.2020086 |
[4] |
Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021001 |
[5] |
Giuseppe Capobianco, Tom Winandy, Simon R. Eugster. The principle of virtual work and Hamilton's principle on Galilean manifolds. Journal of Geometric Mechanics, 2021 doi: 10.3934/jgm.2021002 |
[6] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[7] |
Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010 |
[8] |
Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011 |
[9] |
Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072 |
[10] |
Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020344 |
[11] |
Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020048 |
[12] |
Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455 |
[13] |
Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021002 |
[14] |
Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020170 |
[15] |
Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2021002 |
[16] |
Rajendra K C Khatri, Brendan J Caseria, Yifei Lou, Guanghua Xiao, Yan Cao. Automatic extraction of cell nuclei using dilated convolutional network. Inverse Problems & Imaging, 2021, 15 (1) : 27-40. doi: 10.3934/ipi.2020049 |
[17] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[18] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[19] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[20] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]