August  2012, 32(8): 2937-2950. doi: 10.3934/dcds.2012.32.2937

Why optimal states recruit fewer reactions in metabolic networks

1. 

Department of Physics & Astronomy, Northwestern University, Evanston, IL 60208, United States

2. 

Department of Mathematics, Clarkson University, Potsdam, NY 13699, United States

3. 

Department of Physics & Astronomy and Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, United States

Received  May 2011 Revised  August 2011 Published  March 2012

The metabolic network of a living cell involves several hundreds or thousands of interconnected biochemical reactions. Previous research has shown that under realistic conditions only a fraction of these reactions is concurrently active in any given cell. This is partially determined by nutrient availability, but is also strongly dependent on the metabolic function and network structure. Here, we establish rigorous bounds showing that the fraction of active reactions is smaller (rather than larger) in metabolic networks evolved or engineered to optimize a specific metabolic task, and we show that this is largely determined by the presence of thermodynamically irreversible reactions in the network. We also show that the inactivation of a certain number of reactions determined by irreversibility can generate a cascade of secondary reaction inactivations that propagates through the network. The mathematical results are complemented with numerical simulations of the metabolic networks of the bacterium Escherichia coli and of human cells, which show, counterintuitively, that even the maximization of the total reaction flux in the network leads to a reduced number of active reactions.
Citation: Joo Sang Lee, Takashi Nishikawa, Adilson E. Motter. Why optimal states recruit fewer reactions in metabolic networks. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2937-2950. doi: 10.3934/dcds.2012.32.2937
References:
[1]

U. Alon, "An Introduction to Systems Biology: Design Principles of Biological Circuits,", Chapman & Hall/CRC Mathematical and Computational Biology Series, (2007).   Google Scholar

[2]

A.-L. Barabási and Z. N. Oltvai, Network biology: Understanding the cell's functional organization,, Nat. Rev. Genet., 5 (2004), 101.   Google Scholar

[3]

S. D. Becker, et al., Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox,, Nat. Protoc., 2 (2007), 727.  doi: 10.1038/nprot.2007.99.  Google Scholar

[4]

M. J. Best and K. Ritter, "Linear Programming: Active Set Analysis and Computer Programs,", Prentice-Hall, (1985).   Google Scholar

[5]

L. M. Blank, L. Kuepfer and U. Sauer, Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast,, Genome Biol., 6 (2005).  doi: 10.1186/gb-2005-6-6-r49.  Google Scholar

[6]

H. P. J. Bonarius, G. Schmid and J. Tramper, Flux analysis of underdetermined metabolic networks: The quest for the missing constraints,, Trends Biotechnol., 15 (1997), 308.  doi: 10.1016/S0167-7799(97)01067-6.  Google Scholar

[7]

S. P. Cornelius, J. S. Lee and A. E. Motter, Dispensability of Escherichia coli's latent pathways,, Proc. Natl. Acad. Sci. USA, 108 (2011), 3124.  doi: 10.1073/pnas.1009772108.  Google Scholar

[8]

N. C. Duarte, et al., Global reconstruction of the human metabolic network based on genomic and bibliomic data,, Proc. Natl. Acad. Sci. USA, 104 (2007), 1777.  doi: 10.1073/pnas.0610772104.  Google Scholar

[9]

S. S. Fong, A. R. Joyce and B. Ø. Palsson, Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states,, Genome. Res., 15 (2005), 1365.  doi: 10.1101/gr.3832305.  Google Scholar

[10]

S. S. Fong, A. Nanchen, B. Ø. Palsson and U. Sauer, Latent pathway activation and increased pathway capacity enable Escherichia coli adaptation to loss of key metabolic enzymes,, J. Biol. Chem., 281 (2006), 8024.  doi: 10.1074/jbc.M510016200.  Google Scholar

[11]

, ILOG CPLEX (Version 10.2.0)., Available from: \url{http://www.ilog.com/products/cplex/}., ().   Google Scholar

[12]

D. E. Kaufman and R. L. Smith, Direction choice for accelerated convergence in hit-and-run sampling,, Oper. Res., 46 (1998), 84.  doi: 10.1287/opre.46.1.84.  Google Scholar

[13]

D.-H. Kim and A. E. Motter, Slave nodes and the controllability of metabolic networks,, New J. Phys., 11 (2009).  doi: 10.1088/1367-2630/11/11/113047.  Google Scholar

[14]

M. V. Kritz, M. T. dos Santos, S. Urrutia and J.-M. Schwartz, Organising metabolic networks: Cycles in flux distributions,, J. Theo. Biol., 265 (2010), 250.  doi: 10.1016/j.jtbi.2010.04.026.  Google Scholar

[15]

O. L. Mangasarian, Uniqueness of solution in linear programming,, Linear Algebra Appl., 25 (1979), 151.  doi: 10.1016/0024-3795(79)90014-4.  Google Scholar

[16]

A. E. Motter, Improved network performance via antagonism: From synthetic rescues to multi-drug combinations,, BioEssays, 32 (2010), 236.  doi: 10.1002/bies.200900128.  Google Scholar

[17]

A. E. Motter, N. Gulbahce, E. Almaas and A.-L. Barabási, Predicting synthetic rescues in metabolic networks,, Mol. Syst. Biol., 4 (2008).  doi: 10.1038/msb.2008.1.  Google Scholar

[18]

T. Nishikawa, N. Gulbahce and A. E. Motter, Spontaneous reaction silencing in metabolic optimization,, PLoS Comput. Biol., 4 (2008).  doi: 10.1371/journal.pcbi.1000236.  Google Scholar

[19]

B. Papp, C. Pál and L. D. Hurst, Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast,, Nature, 429 (2004), 661.  doi: 10.1038/nature02636.  Google Scholar

[20]

B. Ø. Palsson, "Systems Biology: Properties of Reconstructed Networks,", Cambridge University Press, (2006).   Google Scholar

[21]

E. Ravasz, A. Somera, D. Mongru, Z. Oltvai and A.-L. Barabási, Hierarchical organization of modularity in metabolic networks,, Science, 297 (2002), 1551.  doi: 10.1126/science.1073374.  Google Scholar

[22]

J. L. Reed, T. D. Vo, C. H. Schilling and B. Ø. Palsson, An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR),, Genome Biol., 4 (2003).  doi: 10.1186/gb-2003-4-9-r54.  Google Scholar

[23]

W. Rudin, "Real and Complex Analysis,'', Third edition, (1987).   Google Scholar

[24]

R. Schuetz, L. Kuepfer and U. Sauer, Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli,, Mol. Syst. Biol., 3 (2007).  doi: 10.1038/msb4100162.  Google Scholar

[25]

T. Shlomi, T. Benyamini, E. Gottlieb, R. Sharan and E. Ruppin, Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warburg effect,, PLoS Comput. Biol., 7 (2011).  doi: 10.1371/journal.pcbi.1002018.  Google Scholar

[26]

R. L. Smith, Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions,, Oper. Res., 32 (1984), 1296.  doi: 10.1287/opre.32.6.1296.  Google Scholar

[27]

V. Spirin and L. A. Mirny, Protein complexes and functional modules in molecular networks,, Proc. Natl. Acad. Sci. USA, 100 (2003), 12123.  doi: 10.1073/pnas.2032324100.  Google Scholar

[28]

P. Szilágyi, On the uniqueness of the optimal solution in linear programming,, Rev. Anal. Numér. Théor. Approx., 35 (2006), 225.   Google Scholar

[29]

A. Varma and B. Ø. Palsson, Metabolic flux balancing: Basic concepts, scientific and practical use,, Nat. Biotechnol., 12 (1994), 994.  doi: 10.1038/nbt1094-994.  Google Scholar

show all references

References:
[1]

U. Alon, "An Introduction to Systems Biology: Design Principles of Biological Circuits,", Chapman & Hall/CRC Mathematical and Computational Biology Series, (2007).   Google Scholar

[2]

A.-L. Barabási and Z. N. Oltvai, Network biology: Understanding the cell's functional organization,, Nat. Rev. Genet., 5 (2004), 101.   Google Scholar

[3]

S. D. Becker, et al., Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox,, Nat. Protoc., 2 (2007), 727.  doi: 10.1038/nprot.2007.99.  Google Scholar

[4]

M. J. Best and K. Ritter, "Linear Programming: Active Set Analysis and Computer Programs,", Prentice-Hall, (1985).   Google Scholar

[5]

L. M. Blank, L. Kuepfer and U. Sauer, Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast,, Genome Biol., 6 (2005).  doi: 10.1186/gb-2005-6-6-r49.  Google Scholar

[6]

H. P. J. Bonarius, G. Schmid and J. Tramper, Flux analysis of underdetermined metabolic networks: The quest for the missing constraints,, Trends Biotechnol., 15 (1997), 308.  doi: 10.1016/S0167-7799(97)01067-6.  Google Scholar

[7]

S. P. Cornelius, J. S. Lee and A. E. Motter, Dispensability of Escherichia coli's latent pathways,, Proc. Natl. Acad. Sci. USA, 108 (2011), 3124.  doi: 10.1073/pnas.1009772108.  Google Scholar

[8]

N. C. Duarte, et al., Global reconstruction of the human metabolic network based on genomic and bibliomic data,, Proc. Natl. Acad. Sci. USA, 104 (2007), 1777.  doi: 10.1073/pnas.0610772104.  Google Scholar

[9]

S. S. Fong, A. R. Joyce and B. Ø. Palsson, Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states,, Genome. Res., 15 (2005), 1365.  doi: 10.1101/gr.3832305.  Google Scholar

[10]

S. S. Fong, A. Nanchen, B. Ø. Palsson and U. Sauer, Latent pathway activation and increased pathway capacity enable Escherichia coli adaptation to loss of key metabolic enzymes,, J. Biol. Chem., 281 (2006), 8024.  doi: 10.1074/jbc.M510016200.  Google Scholar

[11]

, ILOG CPLEX (Version 10.2.0)., Available from: \url{http://www.ilog.com/products/cplex/}., ().   Google Scholar

[12]

D. E. Kaufman and R. L. Smith, Direction choice for accelerated convergence in hit-and-run sampling,, Oper. Res., 46 (1998), 84.  doi: 10.1287/opre.46.1.84.  Google Scholar

[13]

D.-H. Kim and A. E. Motter, Slave nodes and the controllability of metabolic networks,, New J. Phys., 11 (2009).  doi: 10.1088/1367-2630/11/11/113047.  Google Scholar

[14]

M. V. Kritz, M. T. dos Santos, S. Urrutia and J.-M. Schwartz, Organising metabolic networks: Cycles in flux distributions,, J. Theo. Biol., 265 (2010), 250.  doi: 10.1016/j.jtbi.2010.04.026.  Google Scholar

[15]

O. L. Mangasarian, Uniqueness of solution in linear programming,, Linear Algebra Appl., 25 (1979), 151.  doi: 10.1016/0024-3795(79)90014-4.  Google Scholar

[16]

A. E. Motter, Improved network performance via antagonism: From synthetic rescues to multi-drug combinations,, BioEssays, 32 (2010), 236.  doi: 10.1002/bies.200900128.  Google Scholar

[17]

A. E. Motter, N. Gulbahce, E. Almaas and A.-L. Barabási, Predicting synthetic rescues in metabolic networks,, Mol. Syst. Biol., 4 (2008).  doi: 10.1038/msb.2008.1.  Google Scholar

[18]

T. Nishikawa, N. Gulbahce and A. E. Motter, Spontaneous reaction silencing in metabolic optimization,, PLoS Comput. Biol., 4 (2008).  doi: 10.1371/journal.pcbi.1000236.  Google Scholar

[19]

B. Papp, C. Pál and L. D. Hurst, Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast,, Nature, 429 (2004), 661.  doi: 10.1038/nature02636.  Google Scholar

[20]

B. Ø. Palsson, "Systems Biology: Properties of Reconstructed Networks,", Cambridge University Press, (2006).   Google Scholar

[21]

E. Ravasz, A. Somera, D. Mongru, Z. Oltvai and A.-L. Barabási, Hierarchical organization of modularity in metabolic networks,, Science, 297 (2002), 1551.  doi: 10.1126/science.1073374.  Google Scholar

[22]

J. L. Reed, T. D. Vo, C. H. Schilling and B. Ø. Palsson, An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR),, Genome Biol., 4 (2003).  doi: 10.1186/gb-2003-4-9-r54.  Google Scholar

[23]

W. Rudin, "Real and Complex Analysis,'', Third edition, (1987).   Google Scholar

[24]

R. Schuetz, L. Kuepfer and U. Sauer, Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli,, Mol. Syst. Biol., 3 (2007).  doi: 10.1038/msb4100162.  Google Scholar

[25]

T. Shlomi, T. Benyamini, E. Gottlieb, R. Sharan and E. Ruppin, Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warburg effect,, PLoS Comput. Biol., 7 (2011).  doi: 10.1371/journal.pcbi.1002018.  Google Scholar

[26]

R. L. Smith, Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions,, Oper. Res., 32 (1984), 1296.  doi: 10.1287/opre.32.6.1296.  Google Scholar

[27]

V. Spirin and L. A. Mirny, Protein complexes and functional modules in molecular networks,, Proc. Natl. Acad. Sci. USA, 100 (2003), 12123.  doi: 10.1073/pnas.2032324100.  Google Scholar

[28]

P. Szilágyi, On the uniqueness of the optimal solution in linear programming,, Rev. Anal. Numér. Théor. Approx., 35 (2006), 225.   Google Scholar

[29]

A. Varma and B. Ø. Palsson, Metabolic flux balancing: Basic concepts, scientific and practical use,, Nat. Biotechnol., 12 (1994), 994.  doi: 10.1038/nbt1094-994.  Google Scholar

[1]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[2]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

[3]

Yongjie Wang, Nan Gao. Some properties for almost cellular algebras. Electronic Research Archive, 2021, 29 (1) : 1681-1689. doi: 10.3934/era.2020086

[4]

Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021001

[5]

Giuseppe Capobianco, Tom Winandy, Simon R. Eugster. The principle of virtual work and Hamilton's principle on Galilean manifolds. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021002

[6]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[7]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[8]

Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011

[9]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[10]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[11]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[12]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[13]

Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021002

[14]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[15]

Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021002

[16]

Rajendra K C Khatri, Brendan J Caseria, Yifei Lou, Guanghua Xiao, Yan Cao. Automatic extraction of cell nuclei using dilated convolutional network. Inverse Problems & Imaging, 2021, 15 (1) : 27-40. doi: 10.3934/ipi.2020049

[17]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[18]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[19]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[20]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (2)

[Back to Top]