Citation: |
[1] |
L. Chao and B. R. Levin, Structured habitats and the evolution of anti-competitor toxins in bacteria, Proc. Natl Acad. Sci., 75 (1981), 6324-6328.doi: 10.1073/pnas.78.10.6324. |
[2] |
M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.doi: 10.1016/0022-1236(71)90015-2. |
[3] |
M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal., 52 (1973), 161-180.doi: 10.1007/BF00282325. |
[4] |
E. N. Dancer, On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl., 91 (1983), 131-151.doi: 10.1016/0022-247X(83)90098-7. |
[5] |
E. N. Dancer, On positive solutions of some pairs of differential equations, Trans. Amer. Math. Soc., 284 (1984), 729-743.doi: 10.1090/S0002-9947-1984-0743741-4. |
[6] |
E. N. Dancer and Y. Du, Positive solutions for a three-species competition system with diffusion, Part I, General existence results, Nonlinear Anal., 24 (1995), 337-357.doi: 10.1016/0362-546X(94)E0063-M. |
[7] |
Y. Du, Positive periodic solutions of a competitor-competitor-mutualist model, Differential Integral Equations, 9 (1996), 1043-1066. |
[8] |
D. G. Figueiredo and J. P. Gossez, Strict monotonicity of eigenvalues and unique continuation, Comm. Partial Differential Equations, 17 (1992), 339-346. |
[9] |
S. R. Hansen and S. P. Hubbell, Single nutrient microbial competition: Agreement between experimental and theoretical forecast outcomes, Science, 207 (1980), 1491-1493.doi: 10.1126/science.6767274. |
[10] |
S. B. Hsu, Y. S. Li and P. Waltman, Competition in the presence of a lethal external inhibitor, Math. Biosci., 167 (2000), 177-199.doi: 10.1016/S0025-5564(00)00030-4. |
[11] |
S. B. Hsu, T. K. Luo and P. Waltman, Competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor, J. Math. Biol., 34 (1995), 225-238.doi: 10.1007/BF00178774. |
[12] |
S. B. Hsu and P. Waltman, Analysis of a model of two competitors in a chemostat with an external inhibitor, SIAM J. Appl. Math., 52 (1992), 528-540.doi: 10.1137/0152029. |
[13] |
S. B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an un-stirred chemostat, SIAM J. Appl. Math., 53 (1993), 1026-1044.doi: 10.1137/0153051. |
[14] |
S. B. Hsu and P. Waltman, Competition between plasmid-bearing and plasmid-free organisms in selective media, Chem. Engrg. Sci., 52 (1997), 23-35.doi: 10.1016/S0009-2509(96)00385-5. |
[15] |
S. B. Hsu and P. Waltman, Competition in the chemostat when one competitor produces a toxin, Japan J. Indust. Appl. Math., 15 (1998), 471-490.doi: 10.1007/BF03167323. |
[16] |
S. B. Hsu and P. Waltman, A model of the effect of anti-competitor toxins on plasmid-bearing, plasmid-free compettion, Taiwanese J. Math., 6 (2002), 135-155. |
[17] |
S. B. Hsu and P. Waltman, A survey of mathematical models of competition with an inhibitor, Math. Biosci., 187 (2004), 53-91.doi: 10.1016/j.mbs.2003.07.004. |
[18] |
S. B. Hsu, P. Waltman and G. S. K. Wolkowicz, Global analysis of a model of plasmid-bearing, plasmid-free competition in the chemostat, J. Math. Biol., 32 (1994), 731-742.doi: 10.1007/BF00163024. |
[19] |
B. R. Levin, Frequency-dependent selection in bacterial population, Phil. Trans. R. Soc. Lond., 319 (1988), 459-472.doi: 10.1098/rstb.1988.0059. |
[20] |
R. E. Lenski and S. Hattingh, Coexistence of two competitors on one resource and one inhibitor: A chemostat model based on bacteria and antibiotics, J. Theoret. Biol., 122 (1986), 83-93.doi: 10.1016/S0022-5193(86)80226-0. |
[21] |
H. Nie and J. Wu, A system of reaction-diffusion equations in the unstirred chemostat with an inhibitor, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 16 (2006), 989-1009.doi: 10.1142/S0218127406015246. |
[22] |
H. Nie and J. Wu, Asymptotic behavior of an unstirred chemostat with internal inhibitor, J. Math. Anal. Appl., 334 (2007), 889-908.doi: 10.1016/j.jmaa.2007.01.014. |
[23] |
H. L. Smith and P. Waltman, "The Theory of the Chemostat," Cambridge University Press, Cambridge, 1995. |
[24] |
J. Wu, H. Nie and G. S. K. Wolkowicz, A mathematical model of competition for two essential resources in the unstirred chemostat, SIAM J. Appl. Math., 65 (2004), 209-229.doi: 10.1137/S0036139903423285. |
[25] |
J. Wu, H. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat, SIAM J. Math. Anal., 38 (2007), 1860-1885.doi: 10.1137/050627514. |
[26] |
J. Wu, Global bifurcation of coexistence state for the competition model in the chemostat, Nonlinear Anal., 39 (2000), 817-835.doi: 10.1016/S0362-546X(98)00250-8. |
[27] |
J. Wu and G. S. K. Wolkowicz, A system of resource-based growth models with two resources in the un-stirred chemostat, J. Differential Equations, 172 (2001), 300-332. |
[28] |
S. Zheng and J. Liu, Coexistence solutions for a reaction-diffusion system of un-stirred chemostat model, Appl. Math. Comput., 145 (2003), 579-590.doi: 10.1016/S0096-3003(02)00732-4. |