September  2012, 32(9): 3043-3058. doi: 10.3934/dcds.2012.32.3043

Monotone traveling waves for delayed Lotka-Volterra competition systems

1. 

Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China

2. 

Centre for Disease Modelling and Department of Mathematics and Statistics, York University, Toronto, Ontario, M3J 1P3, Canada

Received  January 2012 Revised  March 2012 Published  April 2012

We consider a delayed reaction-diffusion Lotka-Volterra competition system which does not generate a monotone semiflow with respect to the standard ordering relation for competitive systems. We obtain a necessary and sufficient condition for the existence of traveling wave solutions connecting the extinction state to the coexistence state, and prove that such solutions are monotone and unique (up to translation).
Citation: Jian Fang, Jianhong Wu. Monotone traveling waves for delayed Lotka-Volterra competition systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3043-3058. doi: 10.3934/dcds.2012.32.3043
References:
[1]

M. Aguerrea, C. Gomez and S. Trofimchuk, On uniqueness of semi-wavefronts: DiekmannKaper theory of a nonlinear convolution equation re-visited,, Math. Ann., (). Google Scholar

[2]

H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: Travelling waves and steady states,, Nonlinearity, 22 (2009), 2813. doi: 10.1088/0951-7715/22/12/002. Google Scholar

[3]

N. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model,, SIAM J. Appl. Math., 50 (1990), 1663. doi: 10.1137/0150099. Google Scholar

[4]

J. Fang and X.-Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applicaitons,, J. Diff. Eqs., 248 (2010), 2199. doi: 10.1016/j.jde.2010.01.009. Google Scholar

[5]

J. Fang and X.-Q. Zhao, Monotone wavefronts of the nonlocal Fisher-KPP equation,, Nonlinearity, 24 (2011), 3043. doi: 10.1088/0951-7715/24/11/002. Google Scholar

[6]

T. Faria, W. Huang and J. Wu, Travelling waves for delayed reaction-diffusion equations with global response,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 229. doi: 10.1098/rspa.2005.1554. Google Scholar

[7]

T. Faria and J. Oliveira, Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks,, J. Diff. Eqs., 244 (2008), 1049. doi: 10.1016/j.jde.2007.12.005. Google Scholar

[8]

T. Faria and S. Trofimchuk, Positive travelling fronts for reaction-diffusion systems with distributed delay,, Nonlinearity, 23 (2010), 2457. doi: 10.1088/0951-7715/23/10/006. Google Scholar

[9]

T. Faria, Stability and extinction for Lotka-Volterra systems with infinite delay,, J. Dynam. Diff. Eqs., 22 (2010), 299. doi: 10.1007/s10884-010-9166-1. Google Scholar

[10]

G. Friesecke, Convergence to equilibrium for delay-diffusion equations with small delay,, J. Dynam. Diff. Eqs., 5 (1993), 89. doi: 10.1007/BF01063736. Google Scholar

[11]

A. Gomez and S. Trofimchuk, Monotone traveling wavefronts of the KPP-Fisher delayed equation,, J. Diff. Eqs., 250 (2011), 1767. doi: 10.1016/j.jde.2010.11.011. Google Scholar

[12]

S. Gourley, Travelling front solutions of a nonlocal Fisher equation,, J. Math. Biol., 41 (2000), 272. doi: 10.1007/s002850000047. Google Scholar

[13]

J.-S. Guo and X. Liang, The minimal speed of traveling fronts for the Lotka-Volterra competition system,, J. Dynam. Diff. Eqs., 23 (2011), 353. doi: 10.1007/s10884-011-9214-5. Google Scholar

[14]

W. Huang and M. Han, Non-linear determinacy of minimum wave speed for a Lotka-Volterra competition model,, J. Diff. Eqs., 251 (2011), 1549. doi: 10.1016/j.jde.2011.05.012. Google Scholar

[15]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations,, SIAM J. Math. Anal., 40 (2008), 776. doi: 10.1137/070703016. Google Scholar

[16]

Y. Kuang and H. Smith, Convergence in Lotka-Volterra type diffusive delay systems without dominating instantaneous negative feedbacks,, J. Austral. Math. Soc. Ser. B, 34 (1993), 471. doi: 10.1017/S0334270000009036. Google Scholar

[17]

Y. Kuang and H. Smith, Global stability for infinite delay Lotka-Volterra type systems,, J. Diff. Eqs., 103 (1993), 221. doi: 10.1006/jdeq.1993.1048. Google Scholar

[18]

Y. Kuang, Global stability in delay differential systems without dominating instantaneous negative feedbacks,, J. Diff. Eqs., 119 (1995), 503. doi: 10.1006/jdeq.1995.1100. Google Scholar

[19]

M. K. Kwong and C. Ou, Existence and nonexistence of monotone traveling waves for the delayed Fisher equation,, J. Diff. Eqs., 249 (2010), 728. doi: 10.1016/j.jde.2010.04.017. Google Scholar

[20]

M. Lewis, B. Li and H. Weinberger, Spreading speed and linear determinacy for two-species competition models,, J. Math. Biol., 45 (2002), 219. doi: 10.1007/s002850200144. Google Scholar

[21]

W.-T. Li, G. Lin and S. Ruan, Existence of traveling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems,, Nonlinearity, 19 (2006), 1253. doi: [10.1088/0951-7715/19/6/003]. Google Scholar

[22]

G. Lin, W.-T. Li, and M. Ma, Traveling wave solutions in delayed reaction diffusion systems with applications to multi-species models,, Dis. Cont. Dyn. Syst. - Series B, 13 (2010), 393. doi: 10.3934/dcdsb.2010.13.393. Google Scholar

[23]

B. Li, H. Weinberger and M. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82. doi: 10.1016/j.mbs.2005.03.008. Google Scholar

[24]

B. Li, M. Lewis and H. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions,, J. Math. Biol., 58 (2009), 323. doi: 10.1007/s00285-008-0175-1. Google Scholar

[25]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,, J. Funct. Anal., 259 (2010), 857. doi: 10.1016/j.jfa.2010.04.018. Google Scholar

[26]

R. Lui, Biological growth and spread modeled by systems of recursions. I. Mathematical theory,, Math. Biosci., 93 (1989), 269. doi: 10.1016/0025-5564(89)90026-6. Google Scholar

[27]

J. Mallet-Paret, The Fredholm alternative for functional-differential equations of mixed type,, J. Dynam. Diff. Eqs., 11 (1999), 1. doi: 10.1023/A:1021889401235. Google Scholar

[28]

R. H. Martin and H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems,, Trans. Amer. Math. Soc., 321 (1990), 1. doi: 10.2307/2001590. Google Scholar

[29]

G. Nadin, B. Perthame and M. Tang, Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation,, C. R. Acad. Sci. Paris, 349 (2011), 553. doi: 10.1016/j.crma.2011.03.008. Google Scholar

[30]

C. Ou and J. Wu, Traveling wavefronts in a delayed food-limited population model,, SIAM J. Math. Anal., 39 (2007), 103. doi: 10.1137/050638011. Google Scholar

[31]

C. Ou and J. Wu, Persistence of wavefronts in delayed nonlocal reaction-diffusion equations,, J. Diff. Eqs., 235 (2007), 219. doi: 10.1016/j.jde.2006.12.010. Google Scholar

[32]

H. Smith, Systems of ordinary differential equations which generate an order preserving flow. A survey of results,, SIAM Rev., 30 (1988), 87. doi: 10.1137/1030003. Google Scholar

[33]

H. Smith, "Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,", Math. Surveys and Monographs, 41 (1995). Google Scholar

[34]

H. Smith and H. Thieme, Monotone semiflows in scalar non-quasi-monotone functional-differential equations,, J. Math. Anal. Appl., 150 (1990), 289. doi: 10.1016/0022-247X(90)90105-O. Google Scholar

[35]

H. Smith and H. Thieme, Strongly order preserving semiflows generated by functional-differential equations,, J. Diff. Eqs., 93 (1991), 332. doi: 10.1016/0022-0396(91)90016-3. Google Scholar

[36]

A. I. Volpert, V. A. Volpert and V. A. Volpert, "Traveling Wave Solutions of Parabolic Systems,", Translation of Mathematical Monographs, 140 (1994). Google Scholar

[37]

H. Wang, Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems,, J. Non. Sci., 21 (2011), 747. doi: 10.1007/s00332-011-9099-9. Google Scholar

[38]

H. F. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353. doi: 10.1137/0513028. Google Scholar

[39]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat,, J. Math. Biol., 45 (2002), 511. doi: 10.1007/s00285-002-0169-3. Google Scholar

[40]

J. Wu and X.-Q. Zhao, Diffusive monotonicity and threshold dynamics of delayed reaction diffusion equations,, J. Diff. Eqs., 186 (2002), 470. doi: 10.1016/S0022-0396(02)00012-8. Google Scholar

[41]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay,, J. Dyn. Diff. Eqs., 13 (2001), 651. doi: 10.1023/A:1016690424892. Google Scholar

show all references

References:
[1]

M. Aguerrea, C. Gomez and S. Trofimchuk, On uniqueness of semi-wavefronts: DiekmannKaper theory of a nonlinear convolution equation re-visited,, Math. Ann., (). Google Scholar

[2]

H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: Travelling waves and steady states,, Nonlinearity, 22 (2009), 2813. doi: 10.1088/0951-7715/22/12/002. Google Scholar

[3]

N. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model,, SIAM J. Appl. Math., 50 (1990), 1663. doi: 10.1137/0150099. Google Scholar

[4]

J. Fang and X.-Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applicaitons,, J. Diff. Eqs., 248 (2010), 2199. doi: 10.1016/j.jde.2010.01.009. Google Scholar

[5]

J. Fang and X.-Q. Zhao, Monotone wavefronts of the nonlocal Fisher-KPP equation,, Nonlinearity, 24 (2011), 3043. doi: 10.1088/0951-7715/24/11/002. Google Scholar

[6]

T. Faria, W. Huang and J. Wu, Travelling waves for delayed reaction-diffusion equations with global response,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 229. doi: 10.1098/rspa.2005.1554. Google Scholar

[7]

T. Faria and J. Oliveira, Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks,, J. Diff. Eqs., 244 (2008), 1049. doi: 10.1016/j.jde.2007.12.005. Google Scholar

[8]

T. Faria and S. Trofimchuk, Positive travelling fronts for reaction-diffusion systems with distributed delay,, Nonlinearity, 23 (2010), 2457. doi: 10.1088/0951-7715/23/10/006. Google Scholar

[9]

T. Faria, Stability and extinction for Lotka-Volterra systems with infinite delay,, J. Dynam. Diff. Eqs., 22 (2010), 299. doi: 10.1007/s10884-010-9166-1. Google Scholar

[10]

G. Friesecke, Convergence to equilibrium for delay-diffusion equations with small delay,, J. Dynam. Diff. Eqs., 5 (1993), 89. doi: 10.1007/BF01063736. Google Scholar

[11]

A. Gomez and S. Trofimchuk, Monotone traveling wavefronts of the KPP-Fisher delayed equation,, J. Diff. Eqs., 250 (2011), 1767. doi: 10.1016/j.jde.2010.11.011. Google Scholar

[12]

S. Gourley, Travelling front solutions of a nonlocal Fisher equation,, J. Math. Biol., 41 (2000), 272. doi: 10.1007/s002850000047. Google Scholar

[13]

J.-S. Guo and X. Liang, The minimal speed of traveling fronts for the Lotka-Volterra competition system,, J. Dynam. Diff. Eqs., 23 (2011), 353. doi: 10.1007/s10884-011-9214-5. Google Scholar

[14]

W. Huang and M. Han, Non-linear determinacy of minimum wave speed for a Lotka-Volterra competition model,, J. Diff. Eqs., 251 (2011), 1549. doi: 10.1016/j.jde.2011.05.012. Google Scholar

[15]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations,, SIAM J. Math. Anal., 40 (2008), 776. doi: 10.1137/070703016. Google Scholar

[16]

Y. Kuang and H. Smith, Convergence in Lotka-Volterra type diffusive delay systems without dominating instantaneous negative feedbacks,, J. Austral. Math. Soc. Ser. B, 34 (1993), 471. doi: 10.1017/S0334270000009036. Google Scholar

[17]

Y. Kuang and H. Smith, Global stability for infinite delay Lotka-Volterra type systems,, J. Diff. Eqs., 103 (1993), 221. doi: 10.1006/jdeq.1993.1048. Google Scholar

[18]

Y. Kuang, Global stability in delay differential systems without dominating instantaneous negative feedbacks,, J. Diff. Eqs., 119 (1995), 503. doi: 10.1006/jdeq.1995.1100. Google Scholar

[19]

M. K. Kwong and C. Ou, Existence and nonexistence of monotone traveling waves for the delayed Fisher equation,, J. Diff. Eqs., 249 (2010), 728. doi: 10.1016/j.jde.2010.04.017. Google Scholar

[20]

M. Lewis, B. Li and H. Weinberger, Spreading speed and linear determinacy for two-species competition models,, J. Math. Biol., 45 (2002), 219. doi: 10.1007/s002850200144. Google Scholar

[21]

W.-T. Li, G. Lin and S. Ruan, Existence of traveling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems,, Nonlinearity, 19 (2006), 1253. doi: [10.1088/0951-7715/19/6/003]. Google Scholar

[22]

G. Lin, W.-T. Li, and M. Ma, Traveling wave solutions in delayed reaction diffusion systems with applications to multi-species models,, Dis. Cont. Dyn. Syst. - Series B, 13 (2010), 393. doi: 10.3934/dcdsb.2010.13.393. Google Scholar

[23]

B. Li, H. Weinberger and M. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82. doi: 10.1016/j.mbs.2005.03.008. Google Scholar

[24]

B. Li, M. Lewis and H. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions,, J. Math. Biol., 58 (2009), 323. doi: 10.1007/s00285-008-0175-1. Google Scholar

[25]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,, J. Funct. Anal., 259 (2010), 857. doi: 10.1016/j.jfa.2010.04.018. Google Scholar

[26]

R. Lui, Biological growth and spread modeled by systems of recursions. I. Mathematical theory,, Math. Biosci., 93 (1989), 269. doi: 10.1016/0025-5564(89)90026-6. Google Scholar

[27]

J. Mallet-Paret, The Fredholm alternative for functional-differential equations of mixed type,, J. Dynam. Diff. Eqs., 11 (1999), 1. doi: 10.1023/A:1021889401235. Google Scholar

[28]

R. H. Martin and H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems,, Trans. Amer. Math. Soc., 321 (1990), 1. doi: 10.2307/2001590. Google Scholar

[29]

G. Nadin, B. Perthame and M. Tang, Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation,, C. R. Acad. Sci. Paris, 349 (2011), 553. doi: 10.1016/j.crma.2011.03.008. Google Scholar

[30]

C. Ou and J. Wu, Traveling wavefronts in a delayed food-limited population model,, SIAM J. Math. Anal., 39 (2007), 103. doi: 10.1137/050638011. Google Scholar

[31]

C. Ou and J. Wu, Persistence of wavefronts in delayed nonlocal reaction-diffusion equations,, J. Diff. Eqs., 235 (2007), 219. doi: 10.1016/j.jde.2006.12.010. Google Scholar

[32]

H. Smith, Systems of ordinary differential equations which generate an order preserving flow. A survey of results,, SIAM Rev., 30 (1988), 87. doi: 10.1137/1030003. Google Scholar

[33]

H. Smith, "Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,", Math. Surveys and Monographs, 41 (1995). Google Scholar

[34]

H. Smith and H. Thieme, Monotone semiflows in scalar non-quasi-monotone functional-differential equations,, J. Math. Anal. Appl., 150 (1990), 289. doi: 10.1016/0022-247X(90)90105-O. Google Scholar

[35]

H. Smith and H. Thieme, Strongly order preserving semiflows generated by functional-differential equations,, J. Diff. Eqs., 93 (1991), 332. doi: 10.1016/0022-0396(91)90016-3. Google Scholar

[36]

A. I. Volpert, V. A. Volpert and V. A. Volpert, "Traveling Wave Solutions of Parabolic Systems,", Translation of Mathematical Monographs, 140 (1994). Google Scholar

[37]

H. Wang, Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems,, J. Non. Sci., 21 (2011), 747. doi: 10.1007/s00332-011-9099-9. Google Scholar

[38]

H. F. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353. doi: 10.1137/0513028. Google Scholar

[39]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat,, J. Math. Biol., 45 (2002), 511. doi: 10.1007/s00285-002-0169-3. Google Scholar

[40]

J. Wu and X.-Q. Zhao, Diffusive monotonicity and threshold dynamics of delayed reaction diffusion equations,, J. Diff. Eqs., 186 (2002), 470. doi: 10.1016/S0022-0396(02)00012-8. Google Scholar

[41]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay,, J. Dyn. Diff. Eqs., 13 (2001), 651. doi: 10.1023/A:1016690424892. Google Scholar

[1]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[2]

Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029

[3]

Yuzo Hosono. Traveling waves for a diffusive Lotka-Volterra competition model I: singular perturbations. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 79-95. doi: 10.3934/dcdsb.2003.3.79

[4]

Yang Wang, Xiong Li. Uniqueness of traveling front solutions for the Lotka-Volterra system in the weak competition case. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3067-3075. doi: 10.3934/dcdsb.2018300

[5]

Zhi-Cheng Wang, Hui-Ling Niu, Shigui Ruan. On the existence of axisymmetric traveling fronts in Lotka-Volterra competition-diffusion systems in ℝ3. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1111-1144. doi: 10.3934/dcdsb.2017055

[6]

Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331

[7]

Yuzo Hosono. Traveling waves for the Lotka-Volterra predator-prey system without diffusion of the predator. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 161-171. doi: 10.3934/dcdsb.2015.20.161

[8]

Zhaohai Ma, Rong Yuan, Yang Wang, Xin Wu. Multidimensional stability of planar traveling waves for the delayed nonlocal dispersal competitive Lotka-Volterra system. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2069-2092. doi: 10.3934/cpaa.2019093

[9]

Li-Jun Du, Wan-Tong Li, Jia-Bing Wang. Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1187-1213. doi: 10.3934/mbe.2017061

[10]

Dejun Fan, Xiaoyu Yi, Ling Xia, Jingliang Lv. Dynamical behaviors of stochastic type K monotone Lotka-Volterra systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2901-2922. doi: 10.3934/dcdsb.2018291

[11]

Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650

[12]

Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953

[13]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[14]

Qi Wang, Chunyi Gai, Jingda Yan. Qualitative analysis of a Lotka-Volterra competition system with advection. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1239-1284. doi: 10.3934/dcds.2015.35.1239

[15]

Qi Wang, Yang Song, Lingjie Shao. Boundedness and persistence of populations in advective Lotka-Volterra competition system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2245-2263. doi: 10.3934/dcdsb.2018195

[16]

Anthony W. Leung, Xiaojie Hou, Wei Feng. Traveling wave solutions for Lotka-Volterra system re-visited. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 171-196. doi: 10.3934/dcdsb.2011.15.171

[17]

Fuke Wu, Yangzi Hu. Stochastic Lotka-Volterra system with unbounded distributed delay. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 275-288. doi: 10.3934/dcdsb.2010.14.275

[18]

Xiaoli Liu, Dongmei Xiao. Bifurcations in a discrete time Lotka-Volterra predator-prey system. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 559-572. doi: 10.3934/dcdsb.2006.6.559

[19]

Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255

[20]

De Tang. Dynamical behavior for a Lotka-Volterra weak competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4913-4928. doi: 10.3934/dcdsb.2019037

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]