-
Previous Article
Relative entropies in thermodynamics of complete fluid systems
- DCDS Home
- This Issue
-
Next Article
The efficient approximation of coherent pairs in non-autonomous dynamical systems
Monotone traveling waves for delayed Lotka-Volterra competition systems
1. | Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China |
2. | Centre for Disease Modelling and Department of Mathematics and Statistics, York University, Toronto, Ontario, M3J 1P3, Canada |
References:
[1] |
M. Aguerrea, C. Gomez and S. Trofimchuk, On uniqueness of semi-wavefronts: DiekmannKaper theory of a nonlinear convolution equation re-visited,, Math. Ann., (). Google Scholar |
[2] |
H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: Travelling waves and steady states,, Nonlinearity, 22 (2009), 2813.
doi: 10.1088/0951-7715/22/12/002. |
[3] |
N. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model,, SIAM J. Appl. Math., 50 (1990), 1663.
doi: 10.1137/0150099. |
[4] |
J. Fang and X.-Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applicaitons,, J. Diff. Eqs., 248 (2010), 2199.
doi: 10.1016/j.jde.2010.01.009. |
[5] |
J. Fang and X.-Q. Zhao, Monotone wavefronts of the nonlocal Fisher-KPP equation,, Nonlinearity, 24 (2011), 3043.
doi: 10.1088/0951-7715/24/11/002. |
[6] |
T. Faria, W. Huang and J. Wu, Travelling waves for delayed reaction-diffusion equations with global response,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 229.
doi: 10.1098/rspa.2005.1554. |
[7] |
T. Faria and J. Oliveira, Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks,, J. Diff. Eqs., 244 (2008), 1049.
doi: 10.1016/j.jde.2007.12.005. |
[8] |
T. Faria and S. Trofimchuk, Positive travelling fronts for reaction-diffusion systems with distributed delay,, Nonlinearity, 23 (2010), 2457.
doi: 10.1088/0951-7715/23/10/006. |
[9] |
T. Faria, Stability and extinction for Lotka-Volterra systems with infinite delay,, J. Dynam. Diff. Eqs., 22 (2010), 299.
doi: 10.1007/s10884-010-9166-1. |
[10] |
G. Friesecke, Convergence to equilibrium for delay-diffusion equations with small delay,, J. Dynam. Diff. Eqs., 5 (1993), 89.
doi: 10.1007/BF01063736. |
[11] |
A. Gomez and S. Trofimchuk, Monotone traveling wavefronts of the KPP-Fisher delayed equation,, J. Diff. Eqs., 250 (2011), 1767.
doi: 10.1016/j.jde.2010.11.011. |
[12] |
S. Gourley, Travelling front solutions of a nonlocal Fisher equation,, J. Math. Biol., 41 (2000), 272.
doi: 10.1007/s002850000047. |
[13] |
J.-S. Guo and X. Liang, The minimal speed of traveling fronts for the Lotka-Volterra competition system,, J. Dynam. Diff. Eqs., 23 (2011), 353.
doi: 10.1007/s10884-011-9214-5. |
[14] |
W. Huang and M. Han, Non-linear determinacy of minimum wave speed for a Lotka-Volterra competition model,, J. Diff. Eqs., 251 (2011), 1549.
doi: 10.1016/j.jde.2011.05.012. |
[15] |
S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations,, SIAM J. Math. Anal., 40 (2008), 776.
doi: 10.1137/070703016. |
[16] |
Y. Kuang and H. Smith, Convergence in Lotka-Volterra type diffusive delay systems without dominating instantaneous negative feedbacks,, J. Austral. Math. Soc. Ser. B, 34 (1993), 471.
doi: 10.1017/S0334270000009036. |
[17] |
Y. Kuang and H. Smith, Global stability for infinite delay Lotka-Volterra type systems,, J. Diff. Eqs., 103 (1993), 221.
doi: 10.1006/jdeq.1993.1048. |
[18] |
Y. Kuang, Global stability in delay differential systems without dominating instantaneous negative feedbacks,, J. Diff. Eqs., 119 (1995), 503.
doi: 10.1006/jdeq.1995.1100. |
[19] |
M. K. Kwong and C. Ou, Existence and nonexistence of monotone traveling waves for the delayed Fisher equation,, J. Diff. Eqs., 249 (2010), 728.
doi: 10.1016/j.jde.2010.04.017. |
[20] |
M. Lewis, B. Li and H. Weinberger, Spreading speed and linear determinacy for two-species competition models,, J. Math. Biol., 45 (2002), 219.
doi: 10.1007/s002850200144. |
[21] |
W.-T. Li, G. Lin and S. Ruan, Existence of traveling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems,, Nonlinearity, 19 (2006), 1253.
doi: [10.1088/0951-7715/19/6/003]. |
[22] |
G. Lin, W.-T. Li, and M. Ma, Traveling wave solutions in delayed reaction diffusion systems with applications to multi-species models,, Dis. Cont. Dyn. Syst. - Series B, 13 (2010), 393.
doi: 10.3934/dcdsb.2010.13.393. |
[23] |
B. Li, H. Weinberger and M. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82.
doi: 10.1016/j.mbs.2005.03.008. |
[24] |
B. Li, M. Lewis and H. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions,, J. Math. Biol., 58 (2009), 323.
doi: 10.1007/s00285-008-0175-1. |
[25] |
X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,, J. Funct. Anal., 259 (2010), 857.
doi: 10.1016/j.jfa.2010.04.018. |
[26] |
R. Lui, Biological growth and spread modeled by systems of recursions. I. Mathematical theory,, Math. Biosci., 93 (1989), 269.
doi: 10.1016/0025-5564(89)90026-6. |
[27] |
J. Mallet-Paret, The Fredholm alternative for functional-differential equations of mixed type,, J. Dynam. Diff. Eqs., 11 (1999), 1.
doi: 10.1023/A:1021889401235. |
[28] |
R. H. Martin and H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems,, Trans. Amer. Math. Soc., 321 (1990), 1.
doi: 10.2307/2001590. |
[29] |
G. Nadin, B. Perthame and M. Tang, Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation,, C. R. Acad. Sci. Paris, 349 (2011), 553.
doi: 10.1016/j.crma.2011.03.008. |
[30] |
C. Ou and J. Wu, Traveling wavefronts in a delayed food-limited population model,, SIAM J. Math. Anal., 39 (2007), 103.
doi: 10.1137/050638011. |
[31] |
C. Ou and J. Wu, Persistence of wavefronts in delayed nonlocal reaction-diffusion equations,, J. Diff. Eqs., 235 (2007), 219.
doi: 10.1016/j.jde.2006.12.010. |
[32] |
H. Smith, Systems of ordinary differential equations which generate an order preserving flow. A survey of results,, SIAM Rev., 30 (1988), 87.
doi: 10.1137/1030003. |
[33] |
H. Smith, "Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,", Math. Surveys and Monographs, 41 (1995).
|
[34] |
H. Smith and H. Thieme, Monotone semiflows in scalar non-quasi-monotone functional-differential equations,, J. Math. Anal. Appl., 150 (1990), 289.
doi: 10.1016/0022-247X(90)90105-O. |
[35] |
H. Smith and H. Thieme, Strongly order preserving semiflows generated by functional-differential equations,, J. Diff. Eqs., 93 (1991), 332.
doi: 10.1016/0022-0396(91)90016-3. |
[36] |
A. I. Volpert, V. A. Volpert and V. A. Volpert, "Traveling Wave Solutions of Parabolic Systems,", Translation of Mathematical Monographs, 140 (1994).
|
[37] |
H. Wang, Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems,, J. Non. Sci., 21 (2011), 747.
doi: 10.1007/s00332-011-9099-9. |
[38] |
H. F. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353.
doi: 10.1137/0513028. |
[39] |
H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat,, J. Math. Biol., 45 (2002), 511.
doi: 10.1007/s00285-002-0169-3. |
[40] |
J. Wu and X.-Q. Zhao, Diffusive monotonicity and threshold dynamics of delayed reaction diffusion equations,, J. Diff. Eqs., 186 (2002), 470.
doi: 10.1016/S0022-0396(02)00012-8. |
[41] |
J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay,, J. Dyn. Diff. Eqs., 13 (2001), 651.
doi: 10.1023/A:1016690424892. |
show all references
References:
[1] |
M. Aguerrea, C. Gomez and S. Trofimchuk, On uniqueness of semi-wavefronts: DiekmannKaper theory of a nonlinear convolution equation re-visited,, Math. Ann., (). Google Scholar |
[2] |
H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: Travelling waves and steady states,, Nonlinearity, 22 (2009), 2813.
doi: 10.1088/0951-7715/22/12/002. |
[3] |
N. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model,, SIAM J. Appl. Math., 50 (1990), 1663.
doi: 10.1137/0150099. |
[4] |
J. Fang and X.-Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applicaitons,, J. Diff. Eqs., 248 (2010), 2199.
doi: 10.1016/j.jde.2010.01.009. |
[5] |
J. Fang and X.-Q. Zhao, Monotone wavefronts of the nonlocal Fisher-KPP equation,, Nonlinearity, 24 (2011), 3043.
doi: 10.1088/0951-7715/24/11/002. |
[6] |
T. Faria, W. Huang and J. Wu, Travelling waves for delayed reaction-diffusion equations with global response,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 229.
doi: 10.1098/rspa.2005.1554. |
[7] |
T. Faria and J. Oliveira, Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks,, J. Diff. Eqs., 244 (2008), 1049.
doi: 10.1016/j.jde.2007.12.005. |
[8] |
T. Faria and S. Trofimchuk, Positive travelling fronts for reaction-diffusion systems with distributed delay,, Nonlinearity, 23 (2010), 2457.
doi: 10.1088/0951-7715/23/10/006. |
[9] |
T. Faria, Stability and extinction for Lotka-Volterra systems with infinite delay,, J. Dynam. Diff. Eqs., 22 (2010), 299.
doi: 10.1007/s10884-010-9166-1. |
[10] |
G. Friesecke, Convergence to equilibrium for delay-diffusion equations with small delay,, J. Dynam. Diff. Eqs., 5 (1993), 89.
doi: 10.1007/BF01063736. |
[11] |
A. Gomez and S. Trofimchuk, Monotone traveling wavefronts of the KPP-Fisher delayed equation,, J. Diff. Eqs., 250 (2011), 1767.
doi: 10.1016/j.jde.2010.11.011. |
[12] |
S. Gourley, Travelling front solutions of a nonlocal Fisher equation,, J. Math. Biol., 41 (2000), 272.
doi: 10.1007/s002850000047. |
[13] |
J.-S. Guo and X. Liang, The minimal speed of traveling fronts for the Lotka-Volterra competition system,, J. Dynam. Diff. Eqs., 23 (2011), 353.
doi: 10.1007/s10884-011-9214-5. |
[14] |
W. Huang and M. Han, Non-linear determinacy of minimum wave speed for a Lotka-Volterra competition model,, J. Diff. Eqs., 251 (2011), 1549.
doi: 10.1016/j.jde.2011.05.012. |
[15] |
S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations,, SIAM J. Math. Anal., 40 (2008), 776.
doi: 10.1137/070703016. |
[16] |
Y. Kuang and H. Smith, Convergence in Lotka-Volterra type diffusive delay systems without dominating instantaneous negative feedbacks,, J. Austral. Math. Soc. Ser. B, 34 (1993), 471.
doi: 10.1017/S0334270000009036. |
[17] |
Y. Kuang and H. Smith, Global stability for infinite delay Lotka-Volterra type systems,, J. Diff. Eqs., 103 (1993), 221.
doi: 10.1006/jdeq.1993.1048. |
[18] |
Y. Kuang, Global stability in delay differential systems without dominating instantaneous negative feedbacks,, J. Diff. Eqs., 119 (1995), 503.
doi: 10.1006/jdeq.1995.1100. |
[19] |
M. K. Kwong and C. Ou, Existence and nonexistence of monotone traveling waves for the delayed Fisher equation,, J. Diff. Eqs., 249 (2010), 728.
doi: 10.1016/j.jde.2010.04.017. |
[20] |
M. Lewis, B. Li and H. Weinberger, Spreading speed and linear determinacy for two-species competition models,, J. Math. Biol., 45 (2002), 219.
doi: 10.1007/s002850200144. |
[21] |
W.-T. Li, G. Lin and S. Ruan, Existence of traveling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems,, Nonlinearity, 19 (2006), 1253.
doi: [10.1088/0951-7715/19/6/003]. |
[22] |
G. Lin, W.-T. Li, and M. Ma, Traveling wave solutions in delayed reaction diffusion systems with applications to multi-species models,, Dis. Cont. Dyn. Syst. - Series B, 13 (2010), 393.
doi: 10.3934/dcdsb.2010.13.393. |
[23] |
B. Li, H. Weinberger and M. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82.
doi: 10.1016/j.mbs.2005.03.008. |
[24] |
B. Li, M. Lewis and H. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions,, J. Math. Biol., 58 (2009), 323.
doi: 10.1007/s00285-008-0175-1. |
[25] |
X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,, J. Funct. Anal., 259 (2010), 857.
doi: 10.1016/j.jfa.2010.04.018. |
[26] |
R. Lui, Biological growth and spread modeled by systems of recursions. I. Mathematical theory,, Math. Biosci., 93 (1989), 269.
doi: 10.1016/0025-5564(89)90026-6. |
[27] |
J. Mallet-Paret, The Fredholm alternative for functional-differential equations of mixed type,, J. Dynam. Diff. Eqs., 11 (1999), 1.
doi: 10.1023/A:1021889401235. |
[28] |
R. H. Martin and H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems,, Trans. Amer. Math. Soc., 321 (1990), 1.
doi: 10.2307/2001590. |
[29] |
G. Nadin, B. Perthame and M. Tang, Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation,, C. R. Acad. Sci. Paris, 349 (2011), 553.
doi: 10.1016/j.crma.2011.03.008. |
[30] |
C. Ou and J. Wu, Traveling wavefronts in a delayed food-limited population model,, SIAM J. Math. Anal., 39 (2007), 103.
doi: 10.1137/050638011. |
[31] |
C. Ou and J. Wu, Persistence of wavefronts in delayed nonlocal reaction-diffusion equations,, J. Diff. Eqs., 235 (2007), 219.
doi: 10.1016/j.jde.2006.12.010. |
[32] |
H. Smith, Systems of ordinary differential equations which generate an order preserving flow. A survey of results,, SIAM Rev., 30 (1988), 87.
doi: 10.1137/1030003. |
[33] |
H. Smith, "Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,", Math. Surveys and Monographs, 41 (1995).
|
[34] |
H. Smith and H. Thieme, Monotone semiflows in scalar non-quasi-monotone functional-differential equations,, J. Math. Anal. Appl., 150 (1990), 289.
doi: 10.1016/0022-247X(90)90105-O. |
[35] |
H. Smith and H. Thieme, Strongly order preserving semiflows generated by functional-differential equations,, J. Diff. Eqs., 93 (1991), 332.
doi: 10.1016/0022-0396(91)90016-3. |
[36] |
A. I. Volpert, V. A. Volpert and V. A. Volpert, "Traveling Wave Solutions of Parabolic Systems,", Translation of Mathematical Monographs, 140 (1994).
|
[37] |
H. Wang, Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems,, J. Non. Sci., 21 (2011), 747.
doi: 10.1007/s00332-011-9099-9. |
[38] |
H. F. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353.
doi: 10.1137/0513028. |
[39] |
H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat,, J. Math. Biol., 45 (2002), 511.
doi: 10.1007/s00285-002-0169-3. |
[40] |
J. Wu and X.-Q. Zhao, Diffusive monotonicity and threshold dynamics of delayed reaction diffusion equations,, J. Diff. Eqs., 186 (2002), 470.
doi: 10.1016/S0022-0396(02)00012-8. |
[41] |
J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay,, J. Dyn. Diff. Eqs., 13 (2001), 651.
doi: 10.1023/A:1016690424892. |
[1] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[2] |
Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021014 |
[3] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[4] |
Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256 |
[5] |
Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020364 |
[6] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[7] |
Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251 |
[8] |
Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113 |
[9] |
Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020341 |
[10] |
Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020323 |
[11] |
Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020032 |
[12] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[13] |
Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228 |
[14] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[15] |
Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215 |
[16] |
Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004 |
[17] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[18] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[19] |
Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020468 |
[20] |
Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020103 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]