September  2012, 32(9): 3059-3080. doi: 10.3934/dcds.2012.32.3059

Relative entropies in thermodynamics of complete fluid systems

1. 

Institute of Mathematics of the Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Praha 1, Czech Republic

Received  November 2011 Revised  March 2012 Published  April 2012

We introduce the notion of relative entropy in the framework of thermodynamics of compressible, viscous and heat conducting fluids. The relative entropy is constructed on the basis of a thermodynamic potential called ballistic free energy and provides stability of solutions to the associated Navier-Stokes-Fourier system with respect to perturbations. The theory is illustrated by applications to problems related to the long time behavior of solutions and the problem of weak-strong uniqueness.
Citation: Eduard Feireisl. Relative entropies in thermodynamics of complete fluid systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3059-3080. doi: 10.3934/dcds.2012.32.3059
References:
[1]

S. E. Bechtel, F. J. Rooney and M. G. Forest, Connection between stability, convexity of internal energy, and the second law for compressible Newtonian fuids,, J. Appl. Mech., 72 (2005), 299.  doi: 10.1115/1.1831297.  Google Scholar

[2]

E. Becker, "Gasdynamik,", (German), (1966).   Google Scholar

[3]

D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids,, J. Math. Pures Appl. (9), 87 (2007), 57.  doi: 10.1016/j.matpur.2006.11.001.  Google Scholar

[4]

J. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities,, Monatshefte Math., 133 (2001), 1.  doi: 10.1007/s006050170032.  Google Scholar

[5]

C. M. Dafermos, The second law of thermodynamics and stability,, Arch. Rational Mech. Anal., 70 (1979), 167.  doi: 10.1007/BF00250353.  Google Scholar

[6]

B. Desjardins, Regularity of weak solutions of the compressible isentropic Navier-Stokes equations,, Commun. Partial Differential Equations, 22 (1997), 977.   Google Scholar

[7]

R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces,, Invent. Math., 98 (1989), 511.  doi: 10.1007/BF01393835.  Google Scholar

[8]

S. Eliezer, A. Ghatak and H. Hora, "An Introduction to Equations of States, Theory and Applications,", Cambridge University Press, (1986).   Google Scholar

[9]

E. Feireisl and Novotný, Weak-strong uniqueness property for the full Navier-Stokes-Fourier system,, Arch. Rational Mech. Anal., (2012).   Google Scholar

[10]

E. Feireisl and A. Novotný, "Singular Limits in Thermodynamics of Viscous Fluids,", Advances in Mathematical Fluid Mechanics, (2009).   Google Scholar

[11]

E. Feireisl, A. Novotný and B. J. Jin, Relative entropies, suitable weak solutions, and uniqueness for the compressible Navier-Stokes system,, J. Math. Fluid Mechanics, (2012).   Google Scholar

[12]

E. Feireisl, A. Novotný and Y. Sun, Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids,, Indiana Univ. Math. J., (2012).   Google Scholar

[13]

E. Feireisl and D. Pražák, "Asymptotic Behavior of Dynamical Systems in Fluid Mechanics,", AIMS Series on Applied Mathematics, 4 (2010).   Google Scholar

[14]

P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system,, J. Math. Fluid Mech., (2010).   Google Scholar

[15]

A. Mellet and A. Vasseur, Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations,, SIAM J. Math. Anal., 39 (): 1344.  doi: 10.1137/060658199.  Google Scholar

[16]

L. Saint-Raymond, Hydrodynamic limits: Some improvements of the relative entropy method,, Annal. I. H. Poincaré Anal. Non Linéaire, 26 (2009), 705.   Google Scholar

show all references

References:
[1]

S. E. Bechtel, F. J. Rooney and M. G. Forest, Connection between stability, convexity of internal energy, and the second law for compressible Newtonian fuids,, J. Appl. Mech., 72 (2005), 299.  doi: 10.1115/1.1831297.  Google Scholar

[2]

E. Becker, "Gasdynamik,", (German), (1966).   Google Scholar

[3]

D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids,, J. Math. Pures Appl. (9), 87 (2007), 57.  doi: 10.1016/j.matpur.2006.11.001.  Google Scholar

[4]

J. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities,, Monatshefte Math., 133 (2001), 1.  doi: 10.1007/s006050170032.  Google Scholar

[5]

C. M. Dafermos, The second law of thermodynamics and stability,, Arch. Rational Mech. Anal., 70 (1979), 167.  doi: 10.1007/BF00250353.  Google Scholar

[6]

B. Desjardins, Regularity of weak solutions of the compressible isentropic Navier-Stokes equations,, Commun. Partial Differential Equations, 22 (1997), 977.   Google Scholar

[7]

R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces,, Invent. Math., 98 (1989), 511.  doi: 10.1007/BF01393835.  Google Scholar

[8]

S. Eliezer, A. Ghatak and H. Hora, "An Introduction to Equations of States, Theory and Applications,", Cambridge University Press, (1986).   Google Scholar

[9]

E. Feireisl and Novotný, Weak-strong uniqueness property for the full Navier-Stokes-Fourier system,, Arch. Rational Mech. Anal., (2012).   Google Scholar

[10]

E. Feireisl and A. Novotný, "Singular Limits in Thermodynamics of Viscous Fluids,", Advances in Mathematical Fluid Mechanics, (2009).   Google Scholar

[11]

E. Feireisl, A. Novotný and B. J. Jin, Relative entropies, suitable weak solutions, and uniqueness for the compressible Navier-Stokes system,, J. Math. Fluid Mechanics, (2012).   Google Scholar

[12]

E. Feireisl, A. Novotný and Y. Sun, Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids,, Indiana Univ. Math. J., (2012).   Google Scholar

[13]

E. Feireisl and D. Pražák, "Asymptotic Behavior of Dynamical Systems in Fluid Mechanics,", AIMS Series on Applied Mathematics, 4 (2010).   Google Scholar

[14]

P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system,, J. Math. Fluid Mech., (2010).   Google Scholar

[15]

A. Mellet and A. Vasseur, Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations,, SIAM J. Math. Anal., 39 (): 1344.  doi: 10.1137/060658199.  Google Scholar

[16]

L. Saint-Raymond, Hydrodynamic limits: Some improvements of the relative entropy method,, Annal. I. H. Poincaré Anal. Non Linéaire, 26 (2009), 705.   Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[3]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[4]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[5]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[6]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[7]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[8]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[9]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[10]

Andreu Ferré Moragues. Properties of multicorrelation sequences and large returns under some ergodicity assumptions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020386

[11]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[12]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[13]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[14]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[15]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[16]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[17]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[18]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[19]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[20]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (31)

Other articles
by authors

[Back to Top]