September  2012, 32(9): 3059-3080. doi: 10.3934/dcds.2012.32.3059

Relative entropies in thermodynamics of complete fluid systems

1. 

Institute of Mathematics of the Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Praha 1, Czech Republic

Received  November 2011 Revised  March 2012 Published  April 2012

We introduce the notion of relative entropy in the framework of thermodynamics of compressible, viscous and heat conducting fluids. The relative entropy is constructed on the basis of a thermodynamic potential called ballistic free energy and provides stability of solutions to the associated Navier-Stokes-Fourier system with respect to perturbations. The theory is illustrated by applications to problems related to the long time behavior of solutions and the problem of weak-strong uniqueness.
Citation: Eduard Feireisl. Relative entropies in thermodynamics of complete fluid systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3059-3080. doi: 10.3934/dcds.2012.32.3059
References:
[1]

S. E. Bechtel, F. J. Rooney and M. G. Forest, Connection between stability, convexity of internal energy, and the second law for compressible Newtonian fuids,, J. Appl. Mech., 72 (2005), 299.  doi: 10.1115/1.1831297.  Google Scholar

[2]

E. Becker, "Gasdynamik,", (German), (1966).   Google Scholar

[3]

D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids,, J. Math. Pures Appl. (9), 87 (2007), 57.  doi: 10.1016/j.matpur.2006.11.001.  Google Scholar

[4]

J. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities,, Monatshefte Math., 133 (2001), 1.  doi: 10.1007/s006050170032.  Google Scholar

[5]

C. M. Dafermos, The second law of thermodynamics and stability,, Arch. Rational Mech. Anal., 70 (1979), 167.  doi: 10.1007/BF00250353.  Google Scholar

[6]

B. Desjardins, Regularity of weak solutions of the compressible isentropic Navier-Stokes equations,, Commun. Partial Differential Equations, 22 (1997), 977.   Google Scholar

[7]

R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces,, Invent. Math., 98 (1989), 511.  doi: 10.1007/BF01393835.  Google Scholar

[8]

S. Eliezer, A. Ghatak and H. Hora, "An Introduction to Equations of States, Theory and Applications,", Cambridge University Press, (1986).   Google Scholar

[9]

E. Feireisl and Novotný, Weak-strong uniqueness property for the full Navier-Stokes-Fourier system,, Arch. Rational Mech. Anal., (2012).   Google Scholar

[10]

E. Feireisl and A. Novotný, "Singular Limits in Thermodynamics of Viscous Fluids,", Advances in Mathematical Fluid Mechanics, (2009).   Google Scholar

[11]

E. Feireisl, A. Novotný and B. J. Jin, Relative entropies, suitable weak solutions, and uniqueness for the compressible Navier-Stokes system,, J. Math. Fluid Mechanics, (2012).   Google Scholar

[12]

E. Feireisl, A. Novotný and Y. Sun, Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids,, Indiana Univ. Math. J., (2012).   Google Scholar

[13]

E. Feireisl and D. Pražák, "Asymptotic Behavior of Dynamical Systems in Fluid Mechanics,", AIMS Series on Applied Mathematics, 4 (2010).   Google Scholar

[14]

P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system,, J. Math. Fluid Mech., (2010).   Google Scholar

[15]

A. Mellet and A. Vasseur, Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations,, SIAM J. Math. Anal., 39 (): 1344.  doi: 10.1137/060658199.  Google Scholar

[16]

L. Saint-Raymond, Hydrodynamic limits: Some improvements of the relative entropy method,, Annal. I. H. Poincaré Anal. Non Linéaire, 26 (2009), 705.   Google Scholar

show all references

References:
[1]

S. E. Bechtel, F. J. Rooney and M. G. Forest, Connection between stability, convexity of internal energy, and the second law for compressible Newtonian fuids,, J. Appl. Mech., 72 (2005), 299.  doi: 10.1115/1.1831297.  Google Scholar

[2]

E. Becker, "Gasdynamik,", (German), (1966).   Google Scholar

[3]

D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids,, J. Math. Pures Appl. (9), 87 (2007), 57.  doi: 10.1016/j.matpur.2006.11.001.  Google Scholar

[4]

J. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities,, Monatshefte Math., 133 (2001), 1.  doi: 10.1007/s006050170032.  Google Scholar

[5]

C. M. Dafermos, The second law of thermodynamics and stability,, Arch. Rational Mech. Anal., 70 (1979), 167.  doi: 10.1007/BF00250353.  Google Scholar

[6]

B. Desjardins, Regularity of weak solutions of the compressible isentropic Navier-Stokes equations,, Commun. Partial Differential Equations, 22 (1997), 977.   Google Scholar

[7]

R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces,, Invent. Math., 98 (1989), 511.  doi: 10.1007/BF01393835.  Google Scholar

[8]

S. Eliezer, A. Ghatak and H. Hora, "An Introduction to Equations of States, Theory and Applications,", Cambridge University Press, (1986).   Google Scholar

[9]

E. Feireisl and Novotný, Weak-strong uniqueness property for the full Navier-Stokes-Fourier system,, Arch. Rational Mech. Anal., (2012).   Google Scholar

[10]

E. Feireisl and A. Novotný, "Singular Limits in Thermodynamics of Viscous Fluids,", Advances in Mathematical Fluid Mechanics, (2009).   Google Scholar

[11]

E. Feireisl, A. Novotný and B. J. Jin, Relative entropies, suitable weak solutions, and uniqueness for the compressible Navier-Stokes system,, J. Math. Fluid Mechanics, (2012).   Google Scholar

[12]

E. Feireisl, A. Novotný and Y. Sun, Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids,, Indiana Univ. Math. J., (2012).   Google Scholar

[13]

E. Feireisl and D. Pražák, "Asymptotic Behavior of Dynamical Systems in Fluid Mechanics,", AIMS Series on Applied Mathematics, 4 (2010).   Google Scholar

[14]

P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system,, J. Math. Fluid Mech., (2010).   Google Scholar

[15]

A. Mellet and A. Vasseur, Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations,, SIAM J. Math. Anal., 39 (): 1344.  doi: 10.1137/060658199.  Google Scholar

[16]

L. Saint-Raymond, Hydrodynamic limits: Some improvements of the relative entropy method,, Annal. I. H. Poincaré Anal. Non Linéaire, 26 (2009), 705.   Google Scholar

[1]

Lukáš Poul. Existence of weak solutions to the Navier-Stokes-Fourier system on Lipschitz domains. Conference Publications, 2007, 2007 (Special) : 834-843. doi: 10.3934/proc.2007.2007.834

[2]

Ansgar Jüngel, Josipa-Pina Milišić. Full compressible Navier-Stokes equations for quantum fluids: Derivation and numerical solution. Kinetic & Related Models, 2011, 4 (3) : 785-807. doi: 10.3934/krm.2011.4.785

[3]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[4]

Zhong Tan, Leilei Tong. Asymptotic behavior of the compressible non-isentropic Navier-Stokes-Maxwell system in $\mathbb{R}^3$. Kinetic & Related Models, 2018, 11 (1) : 191-213. doi: 10.3934/krm.2018010

[5]

Jishan Fan, Fucai Li, Gen Nakamura. Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations in a bounded domain. Kinetic & Related Models, 2016, 9 (3) : 443-453. doi: 10.3934/krm.2016002

[6]

Debanjana Mitra, Mythily Ramaswamy, Jean-Pierre Raymond. Largest space for the stabilizability of the linearized compressible Navier-Stokes system in one dimension. Mathematical Control & Related Fields, 2015, 5 (2) : 259-290. doi: 10.3934/mcrf.2015.5.259

[7]

Weike Wang, Xin Xu. Large time behavior of solution for the full compressible navier-stokes-maxwell system. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2283-2313. doi: 10.3934/cpaa.2015.14.2283

[8]

Xiaofeng Hou, Limei Zhu. Serrin-type blowup criterion for full compressible Navier-Stokes-Maxwell system with vacuum. Communications on Pure & Applied Analysis, 2016, 15 (1) : 161-183. doi: 10.3934/cpaa.2016.15.161

[9]

Jishan Fan, Yueling Jia. Local well-posedness of the full compressible Navier-Stokes-Maxwell system with vacuum. Kinetic & Related Models, 2018, 11 (1) : 97-106. doi: 10.3934/krm.2018005

[10]

Zhong Tan, Yong Wang, Xu Zhang. Large time behavior of solutions to the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^{3}$. Kinetic & Related Models, 2012, 5 (3) : 615-638. doi: 10.3934/krm.2012.5.615

[11]

Kaitai Li, Yanren Hou. Fourier nonlinear Galerkin method for Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 497-524. doi: 10.3934/dcds.1996.2.497

[12]

Tong Tang, Hongjun Gao. On the compressible Navier-Stokes-Korteweg equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2745-2766. doi: 10.3934/dcdsb.2016071

[13]

Lu Chen, Zhao Liu, Guozhen Lu. Qualitative properties of solutions to an integral system associated with the Bessel potential. Communications on Pure & Applied Analysis, 2016, 15 (3) : 893-906. doi: 10.3934/cpaa.2016.15.893

[14]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[15]

Wenjun Wang, Weike Wang. Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 513-536. doi: 10.3934/dcds.2015.35.513

[16]

Pierre Fabrie, C. Galusinski. Exponential attractors for the slightly compressible 2D-Navier-Stokes. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 315-348. doi: 10.3934/dcds.1996.2.315

[17]

Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

[18]

Bingyuan Huang, Shijin Ding, Huanyao Wen. Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1717-1752. doi: 10.3934/dcdss.2016072

[19]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[20]

Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (25)

Other articles
by authors

[Back to Top]