\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Relative entropies in thermodynamics of complete fluid systems

Abstract / Introduction Related Papers Cited by
  • We introduce the notion of relative entropy in the framework of thermodynamics of compressible, viscous and heat conducting fluids. The relative entropy is constructed on the basis of a thermodynamic potential called ballistic free energy and provides stability of solutions to the associated Navier-Stokes-Fourier system with respect to perturbations. The theory is illustrated by applications to problems related to the long time behavior of solutions and the problem of weak-strong uniqueness.
    Mathematics Subject Classification: Primary: 35Q30; Secondary: 35B25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. E. Bechtel, F. J. Rooney and M. G. Forest, Connection between stability, convexity of internal energy, and the second law for compressible Newtonian fuids, J. Appl. Mech., 72 (2005), 299-300.doi: 10.1115/1.1831297.

    [2]

    E. Becker, "Gasdynamik," (German), Leitfäden der Angewandten Mathematik und Mechanik, Band 6, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1966.

    [3]

    D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl. (9), 87 (2007), 57-90.doi: 10.1016/j.matpur.2006.11.001.

    [4]

    J. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatshefte Math., 133 (2001), 1-82.doi: 10.1007/s006050170032.

    [5]

    C. M. Dafermos, The second law of thermodynamics and stability, Arch. Rational Mech. Anal., 70 (1979), 167-179.doi: 10.1007/BF00250353.

    [6]

    B. Desjardins, Regularity of weak solutions of the compressible isentropic Navier-Stokes equations, Commun. Partial Differential Equations, 22 (1997), 977-1008.

    [7]

    R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511-547.doi: 10.1007/BF01393835.

    [8]

    S. Eliezer, A. Ghatak and H. Hora, "An Introduction to Equations of States, Theory and Applications," Cambridge University Press, Cambridge, 1986.

    [9]

    E. Feireisl and Novotný, Weak-strong uniqueness property for the full Navier-Stokes-Fourier system, Arch. Rational Mech. Anal., to appear, 2012.

    [10]

    E. Feireisl and A. Novotný, "Singular Limits in Thermodynamics of Viscous Fluids," Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel, 2009.

    [11]

    E. Feireisl, A. Novotný and B. J. Jin, Relative entropies, suitable weak solutions, and uniqueness for the compressible Navier-Stokes system, J. Math. Fluid Mechanics, to appear, 2012.

    [12]

    E. Feireisl, A. Novotný and Y. Sun, Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids, Indiana Univ. Math. J., to appear, 2012.

    [13]

    E. Feireisl and D. Pražák, "Asymptotic Behavior of Dynamical Systems in Fluid Mechanics," AIMS Series on Applied Mathematics, 4, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2010.

    [14]

    P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech., published online, 2010.

    [15]

    A. Mellet and A. VasseurExistence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations, SIAM J. Math. Anal., 39 (2007/08), 1344-1365. doi: 10.1137/060658199.

    [16]

    L. Saint-Raymond, Hydrodynamic limits: Some improvements of the relative entropy method, Annal. I. H. Poincaré Anal. Non Linéaire, 26 (2009), 705-744.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(159) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return