Citation: |
[1] |
B. V. Bazaliy and A. Friedman, A free boundary problem for an elliptic-parabolic system: Application to a model of tumor growth, Comm. in PDE, 28 (2003), 517-560.doi: 10.1081/PDE-120020486. |
[2] |
B. Bazaliy and A. Friedman, Global existence and stability for an elliptic-parabolic free boundary problem: An application to a model with tumor growth, Indiana Univ. Math. J., 52 (2003), 1265-1304.doi: 10.1512/iumj.2003.52.2317. |
[3] |
A. Brown, L. Wang and P. Jung, Stochastic simulation of neurofilament transport in axon: 'Stop and go' hypothesis, Molec. Biol. Cell, 16 (2005), 4243-4255.doi: 10.1091/mbc.E05-02-0141. |
[4] |
D. S. Burgess, Pharmacodynamic principles of antimicrobial therapy in the prevention of resistance, Chest, 115 (1999), 19S-23S.doi: 10.1378/chest.115.suppl_1.19S. |
[5] |
H. M. Byrne, M. A. J. Chaplain, D. L. Evans and I. Hopkinson, Mathematical modelling of angiogenesis in wound healing: Comparison of theory and experiment, J. Theor. Med., 2 (2000), 175-197.doi: 10.1080/10273660008833045. |
[6] |
X. Chen, S. Cui and A. Friedman, A hyperbolic free boundary problem modeling tumor growth: Asymptotic behavior, Trans. Amer. Math. Soc., 357 (2005), 4771-4804.doi: 10.1090/S0002-9947-05-03784-0. |
[7] |
X. Chen and A. Friedman, A free boundary problem for elliptic-hyperbolic system: An application to tumor growth, SIAM J. Math. Anal., 35 (2003), 974-986.doi: 10.1137/S0036141002418388. |
[8] |
G. Craciun, A. Brown and A. Friedman, A dynamical system model of neurofilament transport in axon, J. Theor. Biol., 237 (2005), 316-322.doi: 10.1016/j.jtbi.2005.04.018. |
[9] |
S. Cui and A. Friedman, A free boundary problem for a singular system of differential equations: An application to a model of tumor growth, Trans. Amer. Math. Soc., 355 (2003), 3537-3590.doi: 10.1090/S0002-9947-03-03137-4. |
[10] |
S. Cui and A. Friedman, A hyperbolic free boundary problem modeling tumor growth, Interfaces & Free Boundaries, 5 (2003), 159-181.doi: 10.4171/IFB/76. |
[11] |
E. M. C. D'Agata, M. A. Horn and G. F. Webb, The impact of persistent gastrointestinal colonization on the transmission dynamics of vancomycin-resistant enterococci, The Journal of Infectious Diseases, 185 (2002), 766-773.doi: 10.1086/339293. |
[12] |
E. M. C. D'Agata, G. F. Webb and M. A. Horn, A mathematical model quantifying the impact of antibiotic exposure and other interventions on the endemic prevalence of vancomycin-resistant enterococci, The Journal of Infectious Diseases, 192 (2005), 2004-2011.doi: 10.1086/498041. |
[13] |
M. Fontelos and A. Friedman, Symmetry-breaking bifurcations of free boundary problems in three dimensions, Asymptotic Anal., 35 (2003), 187-206. |
[14] |
A. Friedman, A free boundary problem for a coupled system of elliptic, hyperbolic, and Stokes equations modeling tumor growth, Interfaces & Free Boundaries, 8 (2006), 247-261.doi: 10.4171/IFB/142. |
[15] |
A. Friedman and G. Craciun, A model of intracellular transport of particles in an axon, J. Math. Biol., 51 (2005), 217-246.doi: 10.1007/s00285-004-0285-3. |
[16] |
A. Friedman and G. Craciun, Approximate traveling waves in linear reaction-hyperbolic equations, SIAM J. Math. Anal., 38 (2006), 741-758.doi: 10.1137/050637947. |
[17] |
A. Friedman and B. Hu, Asymptotic stability for a free boundary problem arising in a tumor model, J. Diff. Eqs., 227 (2006), 598-639.doi: 10.1016/j.jde.2005.09.008. |
[18] |
A. Friedman and B. Hu, Bifurcation from stability to instability for a free boundary problem arising in a tumor model, Arch Rat. Mech. Anal., 180 (2006), 293-330.doi: 10.1007/s00205-005-0408-z. |
[19] |
A. Friedman and B. Hu, Uniform convergence for approximate traveling waves in linear reaction-hyperbolic systems, Indiana Univ. Math. J., 56 (2007), 2133-2158.doi: 10.1512/iumj.2007.56.3044. |
[20] |
A. Friedman and B. Hu, Bifurcation for a free boundary problem modeling tumor growth by Stokes equation, SIAM J. Math. Anal., 39 (2007), 174-194.doi: 10.1137/060656292. |
[21] |
A. Friedman and B. Hu, Bifurcation from stability to instability for a free boundary problem modeling tumor growth by Stokes equation, J. Math. Anal. Appl., 327 (2007), 643-664.doi: 10.1016/j.jmaa.2006.04.034. |
[22] |
A. Friedman and B. Hu, Stability and instability of Liapounov-Schmidt and Hopf bifurcations for a free boundary problem arising in a tumor model, Trans. Amer. Math. Soc., 360 (2008), 5291-5342.doi: 10.1090/S0002-9947-08-04468-1. |
[23] |
A. Friedman, B. Hu and J. P. Keener, The diffusion approximation for linear non-autonomous reaction-hyperbolic equations, submitted. |
[24] |
A. Friedman, B. Hu and C. Xue, Analysis of a mathematical model of ischemic cutaneous wounds, SIAM J. Math. Anal., 42 (2010), 2013-2040.doi: 10.1137/090772630. |
[25] |
A. Friedman, B. Hu and C. Xue, A three dimensional model of wound healing: Analysis and computation, Discrete and Continuous Dynamical Systems Series B, to appear. |
[26] |
A. Friedman, C.-Y. Kao and C.-W. Shih, Asymptotic phases in a cell differentiation model, J. Diff. Eqs., 247 (2009), 736-769.doi: 10.1016/j.jde.2009.03.033. |
[27] |
A. Friedman, C.-Y. Kao and C.-W. Shih, Transcriptional control in cell differentiation: Asymptotic limits, submitted. |
[28] |
A. Friedman and F. Reitich, Analysis of a mathematical model for growth of tumors, J. Math. Biol., 38 (1999), 262-284.doi: 10.1007/s002850050149. |
[29] |
A. Friedman and F. Reitich, Symmetry-breaking bifurcation of analytic solutions to free boundary problems: An application to a model of tumor growth, Trans. Amer. Math. Soc., 353 (2001), 1587-1634.doi: 10.1090/S0002-9947-00-02715-X. |
[30] |
A. Friedman and C. Xue, A mathematical model for chronic wounds, Mathematical Biosciences and Engineering, 8 (2011), 253-261.doi: 10.3934/mbe.2011.8.253. |
[31] |
A. Friedman, N. Ziyadi and K. Boushaba, A model of drug resistance with infection by health care workers, Math. Biosciences and Engineering, 7 (2010), 779-792.doi: 10.3934/mbe.2010.7.779. |
[32] |
L. Mariani, M. Lohning, A. Radbruch and T. Hofer, Transcriptional control networks of cell differentiation: Insights from helper T lymphocytes, Biophys. Mol. Biol., 86 (2004), 45-76.doi: 10.1016/j.pbiomolbio.2004.02.007. |
[33] |
L. R. Peterson, Squeezing the antibiotic balloon: The impact of antimicrobial classes on emerging resistance, Clin. Microbiol. Infect. 11 Suppl., 5 (2005), 4-16. |
[34] |
G. J. Pettet, H. M. Byrne, D. L. S. McElwain and J. Norbury, A model of wound-healing angiogenesis in soft tissue, Mathematical Biosciences, 136 (1996), 35-63.doi: 10.1016/0025-5564(96)00044-2. |
[35] |
G. Pettet, M. A. J. Chaplain, D. L. S. McElwain and H. M. Byrne, On the role of angiogenesis in wound healing, Proc. R. Soc. Lond. B, 263 (1996), 1487-1493.doi: 10.1098/rspb.1996.0217. |
[36] |
G. J. Pettet, C. P. Please, M. J. Tindall and D. L. S. McElwain, The migration of cells in multicell tumor spheroids, Bull. Math. Biol., 63 (2001), 231-257.doi: 10.1006/bulm.2000.0217. |
[37] |
M. C. Reed, S. Venakides and J. J. Blum, Approximate traveling waves in linear reaction-hyperbolic equations, SIAM J. Appl. Math., 50 (1990), 167-180.doi: 10.1137/0150011. |
[38] |
F. Salvarani and J. L. Vazquez, The diffusive limit for Carleman-type kinetic models, Nonlinearity, 18 (2005), 1223-1248.doi: 10.1088/0951-7715/18/3/015. |
[39] |
R. C. Schugart, A. Friedman, R. Zhao and C. K. Sen, Wound angiogenesis as a function of tissue oxygen tension: A mathematical model, PNAS, 105 (2008), 2628-2633.doi: 10.1073/pnas.0711642105. |
[40] |
G. F. Webb, E. M. C. D'Agata, P. Magal and S. Ruan, A model of antibiotic-resistant bacterial epidemics in hospitals, PNAS, 102 (2005), 13343-13348.doi: 10.1073/pnas.0504053102. |
[41] |
J. Wu and S. Cui, Asymptotic stability of stationary solutions of a free boundary problem modeling the growth of tumors with fluid tissues, SIAM J. Math. Anal., 41 (2009), 391-414.doi: 10.1137/080726550. |
[42] |
C. Xue, A. Friedman and C. K. Sen, A mathematical model of ischemic cutaneous wounds, PNAS, 106 (2009), 16782-16787.doi: 10.1073/pnas.0909115106. |
[43] |
A. Yates, R. Callard and J. Stark, Combining cytokine signaling with T-bet and GATA-3 regulation in Th1 and Th2 differentiation: A model for cellular decision making, J. Theor. Biol., 231 (2004), 181-196.doi: 10.1016/j.jtbi.2004.06.013. |