September  2012, 32(9): 3133-3221. doi: 10.3934/dcds.2012.32.3133

Lessons in uncertainty quantification for turbulent dynamical systems

1. 

Department of Mathematics and Center for Atmosphere and Ocean Science, Courant Institute of Mathematical Sciences, New York University, United States, United States

Received  January 2012 Revised  March 2012 Published  April 2012

The modus operandi of modern applied mathematics in developing very recent mathematical strategies for uncertainty quantification in partially observed high-dimensional turbulent dynamical systems is emphasized here. The approach involves the synergy of rigorous mathematical guidelines with a suite of physically relevant and progressively more complex test models which are mathematically tractable while possessing such important features as the two-way coupling between the resolved dynamics and the turbulent fluxes, intermittency and positive Lyapunov exponents, eddy diffusivity parameterization and turbulent spectra. A large number of new theoretical and computational phenomena which arise in the emerging statistical-stochastic framework for quantifying and mitigating model error in imperfect predictions, such as the existence of information barriers to model improvement, are developed and reviewed here with the intention to introduce mathematicians, applied mathematicians, and scientists to these remarkable emerging topics with increasing practical importance.
Citation: Andrew J. Majda, Michal Branicki. Lessons in uncertainty quantification for turbulent dynamical systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3133-3221. doi: 10.3934/dcds.2012.32.3133
References:
[1]

R. V. Abramov and A. J. Majda, Blended response algorithms for linear fluctuation-dissipation for complex nonlinear dynamical systems,, Nonlinearity, 20 (2007), 2793.  doi: 10.1088/0951-7715/20/12/004.  Google Scholar

[2]

R. V. Abramov, A. J. Majda and R. Kleeman, Information theory and predictability for low-frequency variability,, J. Atmos. Sci., 62 (2005), 65.  doi: 10.1175/JAS-3373.1.  Google Scholar

[3]

A. Alexanderian, O. Le Maitre, H. Najm, M. Iskandarani and O. Knio, Multiscale Stochastic Preconditioners in Non-intrusive Spectral Projection,, Journal of Scientific Computing, (2011), 1.   Google Scholar

[4]

L. Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998).   Google Scholar

[5]

M. Avellaneda and A. J. Majda, Approximate and exact renormalization theories for a model for turbulent transport,, Phys. Fluids A, 4 (1992), 41.  doi: 10.1063/1.858499.  Google Scholar

[6]

M. Avellaneda and A. J. Majda, Renormalization theory for eddy diffusivity in turbulent transport,, Phys. Rev. Lett., 68 (1992), 3028.  doi: 10.1103/PhysRevLett.68.3028.  Google Scholar

[7]

M. Avellaneda and A. J. Majda, Simple examples with features of renormalization for turbulent transport,, Phil. Trans. R. Soc. Lond. A, 346 (1994), 205.  doi: 10.1098/rsta.1994.0019.  Google Scholar

[8]

A. Bourlioux and A. J. Majda, An elementary model for the validation of flamelet approximations in non-premixed turbulent combustion,, Combust. Theory Model., 4 (2000), 189.  doi: 10.1088/1364-7830/4/2/307.  Google Scholar

[9]

M. Branicki, B. Gershgorin and A. J. Majda, Filtering skill for turbulent signals for a suite of nonlinear and linear kalman filters,, J. Comp. Phys, 231 (2012), 1462.  doi: 10.1016/j.jcp.2011.10.029.  Google Scholar

[10]

M. Branicki and A. J. Majda, Quantifying uncertainty for long range forecasting scenarios with model errors in non-Guassian models with intermittency,, Nonlinearity, (2012).   Google Scholar

[11]

G. Branstator and H. Teng, Two limits of initial-value decadal predictability in a CGCM,, J. Climate, 23 (2010), 6292.  doi: 10.1175/2010JCLI3678.1.  Google Scholar

[12]

R. H. Cameron and W. T. Martin, The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals,, Ann. Math. (2), 48 (1947), 385.  doi: 10.2307/1969178.  Google Scholar

[13]

M. D. Chekroun, D. Kondrashov and M. Ghil, Predicting stochastic systems by noise sampling, and application to the El Niño-Southern Oscillation,, PNAS, 108 (2011), 11766.  doi: 10.1073/pnas.1015753108.  Google Scholar

[14]

A. J. Chorin, Gaussian fields and random flow,, J. Fluid Mech., 63 (1974), 21.  doi: 10.1017/S0022112074000991.  Google Scholar

[15]

S. C. Crow and G. H. Canavan, Relationship between a Wiener-Hermite expansion and an energy cascade,, J. Fluid Mech., 41 (1970), 387.  doi: 10.1017/S0022112070000654.  Google Scholar

[16]

T. DelSole, Predictability and information theory. I: Measures of predictability,, J. Atmos. Sci., 61 (2004), 2425.  doi: 10.1175/1520-0469(2004)061<2425:PAITPI>2.0.CO;2.  Google Scholar

[17]

T. DelSole, Stochastic models of quasigeostrophic turbulence,, Surveys in Geophys., 25 (2004), 107.   Google Scholar

[18]

T. DelSole, Predictability and information theory. II: Imperfect models,, J. Atmos. Sci., 62 (2005), 3368.  doi: 10.1175/JAS3522.1.  Google Scholar

[19]

T. DelSole and J. Shukla, Model fidelity versus skill in seasonal forecasting,, J. Climate, 23 (2010), 4794.  doi: 10.1175/2010JCLI3164.1.  Google Scholar

[20]

K. A. Emanuel, J. C. Wyngaard, J. C. McWilliams, D. A. Randall and Y. L. Yung, "Improving the Scientific Foundation for Atmosphere-Land Ocean Simulations,", Natl. Acad. Press, (2005).   Google Scholar

[21]

E. S. Epstein, Stochastic dynamic predictions,, Tellus, 21 (1969), 739.  doi: 10.1111/j.2153-3490.1969.tb00483.x.  Google Scholar

[22]

C. Franzke, D. Crommelin, A. Fischer and A. J. Majda, A hidden Markov model perspective on regimes and metastability in atmospheric flows,, J. Climate, 21 (2008), 1740.  doi: 10.1175/2007JCLI1751.1.  Google Scholar

[23]

C. Franzke, I. Horenko, A. J. Majda and R. Klein, Systematic metastable atmospheric regime identification in an AGCM,, J. Atmos. Sci., 66 (2009), 1997.  doi: 10.1175/2009JAS2939.1.  Google Scholar

[24]

P. Frauenfelder, C. Schwab and R. A. Todor, Finite elements for elliptic problems with stochastic coefficients,, Comput. Methods Appl. Mech. Eng., 194 (2005), 205.  doi: 10.1016/j.cma.2004.04.008.  Google Scholar

[25]

D. Frierson, Robust increases in midlatitude static stability in global warming simulations,, Geophys. Res. Lett., 33 (2006).  doi: 10.1029/2006GL027504.  Google Scholar

[26]

D. Frierson, Midlatitude static stability in simple and comprehensive general circulation models,, J. Atmos. Sci., 65 (2008), 1049.  doi: 10.1175/2007JAS2373.1.  Google Scholar

[27]

C. Gardiner, "Stochastic Methods: A Handbook for the Natural and Social Sciences,", Fourth edition, (2009).   Google Scholar

[28]

B. Gershgorin, J. Harlim and A. J. Majda, Improving filtering and prediction of spatially extended turbulent systems with model errors through stochastic parameter estimation,, J. Comp. Phys., 229 (2010), 32.  doi: 10.1016/j.jcp.2009.09.022.  Google Scholar

[29]

B. Gershgorin, J. Harlim and A. J. Majda, Test models for improving filtering with model errors through stochastic parameter estimation,, J. Comp. Phys., 229 (2010), 1.  doi: 10.1016/j.jcp.2009.08.019.  Google Scholar

[30]

B. Gershgorin and A. J. Majda, A test model for fluctuation-dissipation theorems with time-periodic statistics,, Physica D, 239 (2010), 1741.  doi: 10.1016/j.physd.2010.05.009.  Google Scholar

[31]

B. Gershgorin and A. J. Majda, Quantifying uncertainty for climate change and long range forecasting scenarios with model errors. I: Gaussian models,, J. Climate, (2012).   Google Scholar

[32]

B. Gershgorin and A. J. Majda, A nonlinear test model for filtering slow-fast systems,, Comm. Math. Sci., 6 (2008), 611.   Google Scholar

[33]

B. Gershgorin and A. J. Majda, Filtering a nonlinear slow-fast system with strong fast forcing,, Comm. Math. Sci., 8 (2010), 67.   Google Scholar

[34]

B. Gershgorin and A. J. Majda, Filtering a statistically exactly solvable test model for turbulent tracers from partial observations,, J. Comp. Phys., 230 (2011), 1602.  doi: 10.1016/j.jcp.2010.11.024.  Google Scholar

[35]

R. G. Ghanem and P. D. Spanos, "Stochastic Finite Elements: A Spectral Approach,", Springer-Verlag, (1991).  doi: 10.1007/978-1-4612-3094-6.  Google Scholar

[36]

D. Giannakis and A. J. Majda, Quantifying the predictive skill in long-range forecasting. I: Coarse-grained predictions in a simple ocean model,, J. Climate, (2011).  doi: 10.1175/2011JCLI4143.1.  Google Scholar

[37]

D. Giannakis and A. J. Majda, Quantifying the predictive skill in long-range forecasting. II: Model error in coarse-grained Markov models with application to ocean-circulation regimes,, J. Climate, (2011).  doi: 10.1175/JCLI-D-11-00110.1.  Google Scholar

[38]

D. Giannakis, A. J. Majda and I. Horenko, Information theory, model error, and predictive skill of stochastic models for complex nonlinear systems,, Physica D, (2011).   Google Scholar

[39]

J. P. Gollub, J. Clarke, M. Gharib, B. Lane and O. N. Mesquita, Fluctuations and transport in a stirred fluid with a mean gradient,, Phys. Rev. Lett., 67 (1991), 3507.  doi: 10.1103/PhysRevLett.67.3507.  Google Scholar

[40]

M. Hairer and A. J. Majda, A simple framework to justify linear response theory,, Nonlinearity, 23 (2010), 909.  doi: 10.1088/0951-7715/23/4/008.  Google Scholar

[41]

J. Harlim and A. J. Majda, Filtering turbulent sparsely observed geophysical flows,, Mon. Wea. Rev., 138 (2010), 1050.  doi: 10.1175/2009MWR3113.1.  Google Scholar

[42]

H. G. Matthies and A. Keese, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations,, Comput. Methods Appl. Mech. Eng., 194 (2005), 1295.  doi: 10.1016/j.cma.2004.05.027.  Google Scholar

[43]

I. Horenko, On clustering of non-stationary meteorological time series,, Dyn. Atmos. Oceans, 49 (2010), 164.  doi: 10.1016/j.dynatmoce.2009.04.003.  Google Scholar

[44]

I. Horenko, On robust estimation of low-frequency variability trends in discrete Markovian sequences of atmospheric circulation patterns,, J. Atmos. Sci., 66 (2009), 2059.  doi: 10.1175/2008JAS2959.1.  Google Scholar

[45]

I. Horenko, Finite element approach to clustering of multidimensional time series,, SIAM J. Sci. Comput., 32 (2010), 62.  doi: 10.1137/080715962.  Google Scholar

[46]

I. Horenko, On the identification of nonstationary factor models and their application to atmospheric data analysis,, J. Atmos. Sci., 67 (2010), 1559.  doi: 10.1175/2010JAS3271.1.  Google Scholar

[47]

I. Horenko, Nonstationarity in multifactor models of discrete jump processes, memory and application to cloud modeling,, J. Atmos. Sci., (2011).  doi: 10.1175/2011JAS3692.1.  Google Scholar

[48]

T. Hou, W. Luo, B. Rozovskii and H.-M. Zhou, Wiener Chaos expansions and numerical solutions of randomly forced equations of fluid mechanics,, J. Comp. Phys., 216 (2006), 687.  doi: 10.1016/j.jcp.2006.01.008.  Google Scholar

[49]

Jayesh and Z. Warhaft, Probability distribution of a passive scalar in grid-generated turbulence,, Phys. Rev. Lett., 67 (1991), 3503.  doi: 10.1103/PhysRevLett.67.3503.  Google Scholar

[50]

Jayesh and Z. Warhaft, Probability distribution, conditional dissipation, and transport of passive temperature fluctuations in grid-generated turbulence,, Phys. Fluids A, 4 (1992).  doi: 10.1063/1.858469.  Google Scholar

[51]

A. H. Jazwinski, "Stochastic Processes and Filtering Theory,", Academic Press, (1970).   Google Scholar

[52]

M. I. Jordan, Graphical models,, Statistical Science, 19 (2004), 140.  doi: 10.1214/088342304000000026.  Google Scholar

[53]

M. A. Katsoulakis, A. J. Majda and A. Sopasakis, Intermittency, metastability and coarse graining for coupled deterministic-stochastic lattice systems,, Nonlinearity, 19 (2006), 1021.  doi: 10.1088/0951-7715/19/5/002.  Google Scholar

[54]

S. R. Keating, A. J. Majda and K. S. Smith, New methods for estimating poleward eddy heat transport using satellite altimetry,, Mon. Wea. Rev., (2011).   Google Scholar

[55]

R. Kleeman, Measuring dynamical prediction utility using relative entropy,, J. Atmos. Sci., 59 (2002), 2057.  doi: 10.1175/1520-0469(2002)059<2057:MDPUUR>2.0.CO;2.  Google Scholar

[56]

P. E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations,", Applications of Mathematics (New York), (1992).   Google Scholar

[57]

R. H. Kraichnan, Small-scale structure of a scalar field convected by turbulence,, Phys. Fluids, 11 (1968), 945.  doi: 10.1063/1.1692063.  Google Scholar

[58]

R. H. Kraichnan, Eddy viscosity and diffusivity: Exact formulas and approximations,, Complex Systems, 1 (1987), 805.   Google Scholar

[59]

R. H. Kraichnan, Anomalous scaling of a randomly advected passive scalar,, Phys. Rev. Lett., 72 (1994), 1016.  doi: 10.1103/PhysRevLett.72.1016.  Google Scholar

[60]

R. H. Kraichnan, V. Yakhot and S. Chen, Scaling relations for a randomly advected passive scalar field,, Phys. Rev. Lett., 75 (1995), 240.  doi: 10.1103/PhysRevLett.75.240.  Google Scholar

[61]

S. Kullback and R. Leibler, On information and sufficiency,, Ann. Math. Stat., 22 (1951), 79.  doi: 10.1214/aoms/1177729694.  Google Scholar

[62]

O. P. Le Maître, O. Knio, H. Najm and R. Ghanem, A stochastic projection method for fluid flow. I. Basic formulation,, J. Comput. Phys., 173 (2001), 481.  doi: 10.1006/jcph.2001.6889.  Google Scholar

[63]

O. P. Le Maître, L. Mathelin, O. M. Knio and M. Y. Hussaini, Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics,, DCDS, 28 (2010), 199.  doi: 10.3934/dcds.2010.28.199.  Google Scholar

[64]

C. E. Leith, Climate response and fluctuation dissipation,, J. Atmospheric Sci., 32 (1975), 2022.  doi: 10.1175/1520-0469(1975)032<2022:CRAFD>2.0.CO;2.  Google Scholar

[65]

E. N. Lorenz, Deterministic nonperiodic flow,, J. Atmos. Sci., 20 (1963), 130.  doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.  Google Scholar

[66]

E. N. Lorenz, A study of predictability of a 28-variable atmospheric model,, Tellus, 17 (1968), 321.  doi: 10.1111/j.2153-3490.1965.tb01424.x.  Google Scholar

[67]

E. N. Lorenz, The predictability of a flow which possesses many scales of motion,, Tellus, 21 (1969), 289.  doi: 10.1111/j.2153-3490.1969.tb00444.x.  Google Scholar

[68]

W. Luo, "Wiener Chaos Expansion and Numerical Solutions of Stochastic Partial Differential Equations,", Ph.D thesis, (2006).   Google Scholar

[69]

W. Luo, "Wiener Chaos Expansion and Numerical Solutions of Stochastic PDE,", VDM Verlag, (2010).   Google Scholar

[70]

A. Majda and P. Kramer, Simplified models for turbulent diffusion: Theory, numerical modeling, and physical phenomena,, Phys. Reports, 314 (1999), 237.  doi: 10.1016/S0370-1573(98)00083-0.  Google Scholar

[71]

A. J. Majda, Real world turbulence and modern applied mathematics, in "Mathematics: Frontiers and Perspectives,", American Math. Society, (2000), 137.   Google Scholar

[72]

A. J. Majda, Challenges in Climate Science and Contemporary Applied Mathematics,, Comm. Pure Appl. Math, (2011).   Google Scholar

[73]

A. J. Majda, R. Abramov and B. Gershgorin, High skill in low frequency climate response through fluctuation dissipation theorems despite structural instability,, Proc. Natl. Acad. Sci. USA, 107 (2010), 581.  doi: 10.1073/pnas.0912997107.  Google Scholar

[74]

A. J. Majda, R. V. Abramov and M. J. Grote, "Information Theory and Stochastics for Multiscale Nonlinear Systems," CRM Monograph Series, 25,, Americal Mathematical Society, (2005).   Google Scholar

[75]

A. J. Majda, C. Franzke and D. Crommelin, Normal forms for reduced stochastic climate models,, Proc. Natl. Acad. Sci. USA, 106 (2009), 3649.  doi: 10.1073/pnas.0900173106.  Google Scholar

[76]

A. J. Majda, C. Franzke, A. Fischer and D. T. Crommelin, Distinct metastable atmospheric regimes despite nearly Gaussian statistics: A paradigm model,, Proc. Natl. Acad. Sci. USA, 103 (2006), 8309.  doi: 10.1073/pnas.0602641103.  Google Scholar

[77]

A. J. Majda, C. Franzke and B. Khouider, An applied mathematics perspective on stochastic modelling for climate,, Phil. Trans. R Soc. Lond. Ser. A Math. Phys. Eng. Sci., 366 (2008), 2429.   Google Scholar

[78]

A. J. Majda and B. Gershgorin, Quantifying uncertainty in climage change science through empirical information theory,, Proc. Natl. Acad. Sci., 107 (2010), 14958.  doi: 10.1073/pnas.1007009107.  Google Scholar

[79]

A. J. Majda and B. Gershgorin, Improving model fidelity and sensitivity for complex systems through empirical information theory,, Proc. Natl. Acad. Sci. USA, 108 (2011), 10044.  doi: 10.1073/pnas.1105174108.  Google Scholar

[80]

A. J. Majda and B. Gershgorin, Link between statistical equilibrium fidelity and forecasting skill for complex systems with model error,, Proc. Natl. Acad. Sci. USA, 108 (2011), 12599.  doi: 10.1073/pnas.1108132108.  Google Scholar

[81]

A. J. Majda, B. Gershgorin and Y. Yuan, Low-frequency climate response and fluctuation-Dissipation theorems: Theory and practice,, J. Atmos. Sci., 67 (2010), 1186.  doi: 10.1175/2009JAS3264.1.  Google Scholar

[82]

A. J. Majda and J. Harlim, Physics constrained nonlinear regression models for time series,, Nonlinearity, (2012).   Google Scholar

[83]

A. J. Majda, R. Kleeman and D. Cai, A mathematical framework for predictability through relative entropy,, Methods Appl. Anal., 9 (2002), 425.   Google Scholar

[84]

A. J. Majda, I. I. Timofeyev and E. Vanden Eijnden, A mathematical framework for stochastic climate models,, Comm. Pure Appl. Math., 54 (2001), 891.  doi: 10.1002/cpa.1014.  Google Scholar

[85]

A. J. Majda, I. I. Timofeyev and E. Vanden Eijnden, Systematic strategies for stochastic mode reduction in climate,, J. Atmos. Sci., 60 (2003), 1705.  doi: 10.1175/1520-0469(2003)060<1705:SSFSMR>2.0.CO;2.  Google Scholar

[86]

A. J. Majda and X. Wang, "Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows,", Cambridge University Press, (2006).  doi: 10.1017/CBO9780511616778.  Google Scholar

[87]

A. J. Majda and X. Wang, Linear response theory for statistical ensembles in complex systems with time-periodic forcing,, Comm. Math. Sci., 8 (2010), 145.   Google Scholar

[88]

A. J. Majda and Y. Yuan, Fundamental limitations of Ad hoc linear and quadratic multi-level regression models for physical systems,, Discrete Cont. Dyn. Systems, 17 (2010), 1333.  doi: 10.3934/dcdsb.2012.17.1333.  Google Scholar

[89]

A. J. Majda, Explicit inertial range renormalization theory in a model for turbulent diffusion,, J. Statist. Phys., 73 (1993), 515.  doi: 10.1007/BF01054338.  Google Scholar

[90]

A. J. Majda, Random shearing direction models for isotropic turbulent diffusion,, J. Statist. Phys., 25 (1994), 1153.  doi: 10.1007/BF02186761.  Google Scholar

[91]

A. J. Majda and B. Gershgorin, Elementary models for turbulent diffusion with complex physical features: Eddy diffusivity, spectrum, and intermittency,, Phil. Trans. Roy. Soc., (2011).   Google Scholar

[92]

A. J. Majda and J. Harlim, "Filtering Complex Turbulent Systems,", Cambridge University Press, (2012).  doi: 10.1017/CBO9781139061308.  Google Scholar

[93]

A. J. Majda, J. Harlim and B. Gershgorin, Mathematical strategies for filtering turbulent dynamical systems,, DCDS, 27 (2010), 441.  doi: 10.3934/dcds.2010.27.441.  Google Scholar

[94]

R. Mikulevicius and B. Rozovskii, Stochastic Navier-Stokes equations for turbulence flow,, SIAM J. Math. Anal., 35 (2004), 1250.  doi: 10.1137/S0036141002409167.  Google Scholar

[95]

N. Wiener, The Homogeneous Chaos,, Am. J. Math., 60 (1938), 897.  doi: 10.2307/2371268.  Google Scholar

[96]

N. Wiener, The use of statistical theory in the study of turbulence,, in, (1939).   Google Scholar

[97]

H. N. Najm, Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics,, in, 41 (2009), 35.   Google Scholar

[98]

J. Neelin, B. Lintner, B. Tian, Q. Li, L. Zhang, P. Patra, M. Chahine and S. Stechmann, Long tails in deep columns of natural and anthropogenic tropospheric tracers,, Geophysical Res. Lett., 37 (2010).  doi: 10.1029/2009GL041726.  Google Scholar

[99]

J. D. Neelin, M. Munnich, H. Su, J. E. Meyerson and C. E. Holloway, Tropical drying trends in global warming models and observations,, Proc Natl Acad Sci USA, 103 (2006), 6110.  doi: 10.1073/pnas.0601798103.  Google Scholar

[100]

J. Von Neumann, Some remarks on the problem of forecasting climatic fluctuations,, in, (1960), 9.   Google Scholar

[101]

B. K. Oksendal, "Stochastic Differential Equations: An Introduction with Applications,", Springer, (2010).   Google Scholar

[102]

S. A. Orszag and L. R. Bissonnette, Dynamical properties of truncated Wiener-Hermite expansions,, Phys. Fluids, 10 (1967), 2603.  doi: 10.1063/1.1762082.  Google Scholar

[103]

T. Palmer, A nonlinear dynamical perspective on model error: A proposal for nonlocal stochastic dynamic parameterizations in weather and climate prediction models,, Quart. J. Roy. Meteor. Soc., 127 (2001), 279.   Google Scholar

[104]

N. Peters, "Turbulent Combustion,", Cambridge Monographs on Mechanics, (2000).   Google Scholar

[105]

C. L. Pettit and P. S. Beran, Spectral and multiresolution Wiener expansions of oscillatory stochastic processes,, J. Sound Vib., 294 (2006), 752.  doi: 10.1016/j.jsv.2005.12.043.  Google Scholar

[106]

S. B. Pope, The probability approach to the modelling of turbulent reacting flows,, Combust. Flame, 27 (1976), 299.  doi: 10.1016/0010-2180(76)90035-3.  Google Scholar

[107]

C. Prévôt and M. Röckner, "A Concise Course on Stochastic Partial Differential Equations,", Lecture Notes in Mathematics, 1905 (2007).   Google Scholar

[108]

T. Sapsis and P. Lermusiaux, Dynamically orthogonal field equations for continuous stochastic dynamical systems,, Physica D, 238 (2009), 2347.  doi: 10.1016/j.physd.2009.09.017.  Google Scholar

[109]

T. Sapsis and P. Lermusiaux, Dynamical criteria for the evolution of the stochastic dimensionality in flows with uncertainty,, Physica D, 241 (2012), 60.  doi: 10.1016/j.physd.2011.10.001.  Google Scholar

[110]

T. Sapsis and A. J. Majda, Blended dynamic reduced subspace algorithms for uncertainty quantification in turbulent dynamical systems,, Nonlinearity, (2012).   Google Scholar

[111]

T. Sapsis and A. J. Majda, Dynamic reduced subspace and quasilinear gaussian methods for uncertainty quantification in turbulent dynamical systems,, Comm. Math. Sci., (2012).   Google Scholar

[112]

T. Sapsis and A. J. Majda, Efficient blended dynamic reduced subspace algorithms for uncertainty quantification in high-dimensional turbulent dynamical systems,, J. Comp. Phys., (2012).   Google Scholar

[113]

R.-A. Todor and C. Schwab, Sparse finite elements for elliptic problems with stochastic loading,, Numer. Math., 95 (2003), 707.  doi: 10.1007/s00211-003-0455-z.  Google Scholar

[114]

L. M. Smith and S. L. Woodruff, Renormalization-group analysis of turbulence,, in, (1998), 275.   Google Scholar

[115]

K. R. Sreenivasan, The passive scalar spectrum and the Obukhov-Corrsin constant,, Phys. Fluids, 8 (1996), 189.  doi: 10.1063/1.868826.  Google Scholar

[116]

H. Teng and G. Branstator, Initial-value predictability of prominent modes of North Pacific subsurface temperature in a CGCM,, Climate Dyn., 36 (2010), 1813.  doi: 10.1007/s00382-010-0749-7.  Google Scholar

[117]

D. M. Titterington, Bayesian methods for neural networks and related models,, Statistical Science, 19 (2004), 128.  doi: 10.1214/088342304000000099.  Google Scholar

[118]

X. Wang, Stationary statistical properties of Rayleigh-Bénard convection at large Prandtl number,, Comm. Pur. Appl. Math., 61 (2008), 789.  doi: 10.1002/cpa.20214.  Google Scholar

[119]

X. Wang, Approximation of stationary statistical properties of dissipative dynamical systems: Time discretization,, Math. Comp., 79 (2010), 259.  doi: 10.1090/S0025-5718-09-02256-X.  Google Scholar

[120]

C. K. Wikle and M. B. Hooten, A general science-based framework for dynamical spatio-temporal models,, TEST, 19 (2010), 417.  doi: 10.1007/s11749-010-0209-z.  Google Scholar

[121]

D. Xiu and G. E. Karniadakis, Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos,, Comput. Methods Appl. Mech. Engrg., 191 (2002), 4927.  doi: 10.1016/S0045-7825(02)00421-8.  Google Scholar

[122]

D. Xiu and G. E. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos,, J. Comput. Phys., 187 (2003), 137.  doi: 10.1016/S0021-9991(03)00092-5.  Google Scholar

[123]

D. Xiu, D. Lucor, C. H. Su and G. E. Karniadakis, Stochastic modeling of flow-structure interactions using generalized polynomial chaos,, J. Fluid Engrg., 124 (2002), 51.  doi: 10.1115/1.1436089.  Google Scholar

[124]

G. E. Karnidakis and D. Xiu, The Wiener-Askey polynomial chaos for stochastic differential equations,, SIAM J. Sci. Comput., 24 (2002), 619.  doi: 10.1137/S1064827501387826.  Google Scholar

[125]

Y. Yuan and A. J. Majda, Invariant measures and asymptotic bounds for normal forms of stochastic climate models,, Chin. Ann. Math. B, 32 (2010), 343.  doi: 10.1007/s11401-011-0647-2.  Google Scholar

show all references

References:
[1]

R. V. Abramov and A. J. Majda, Blended response algorithms for linear fluctuation-dissipation for complex nonlinear dynamical systems,, Nonlinearity, 20 (2007), 2793.  doi: 10.1088/0951-7715/20/12/004.  Google Scholar

[2]

R. V. Abramov, A. J. Majda and R. Kleeman, Information theory and predictability for low-frequency variability,, J. Atmos. Sci., 62 (2005), 65.  doi: 10.1175/JAS-3373.1.  Google Scholar

[3]

A. Alexanderian, O. Le Maitre, H. Najm, M. Iskandarani and O. Knio, Multiscale Stochastic Preconditioners in Non-intrusive Spectral Projection,, Journal of Scientific Computing, (2011), 1.   Google Scholar

[4]

L. Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998).   Google Scholar

[5]

M. Avellaneda and A. J. Majda, Approximate and exact renormalization theories for a model for turbulent transport,, Phys. Fluids A, 4 (1992), 41.  doi: 10.1063/1.858499.  Google Scholar

[6]

M. Avellaneda and A. J. Majda, Renormalization theory for eddy diffusivity in turbulent transport,, Phys. Rev. Lett., 68 (1992), 3028.  doi: 10.1103/PhysRevLett.68.3028.  Google Scholar

[7]

M. Avellaneda and A. J. Majda, Simple examples with features of renormalization for turbulent transport,, Phil. Trans. R. Soc. Lond. A, 346 (1994), 205.  doi: 10.1098/rsta.1994.0019.  Google Scholar

[8]

A. Bourlioux and A. J. Majda, An elementary model for the validation of flamelet approximations in non-premixed turbulent combustion,, Combust. Theory Model., 4 (2000), 189.  doi: 10.1088/1364-7830/4/2/307.  Google Scholar

[9]

M. Branicki, B. Gershgorin and A. J. Majda, Filtering skill for turbulent signals for a suite of nonlinear and linear kalman filters,, J. Comp. Phys, 231 (2012), 1462.  doi: 10.1016/j.jcp.2011.10.029.  Google Scholar

[10]

M. Branicki and A. J. Majda, Quantifying uncertainty for long range forecasting scenarios with model errors in non-Guassian models with intermittency,, Nonlinearity, (2012).   Google Scholar

[11]

G. Branstator and H. Teng, Two limits of initial-value decadal predictability in a CGCM,, J. Climate, 23 (2010), 6292.  doi: 10.1175/2010JCLI3678.1.  Google Scholar

[12]

R. H. Cameron and W. T. Martin, The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals,, Ann. Math. (2), 48 (1947), 385.  doi: 10.2307/1969178.  Google Scholar

[13]

M. D. Chekroun, D. Kondrashov and M. Ghil, Predicting stochastic systems by noise sampling, and application to the El Niño-Southern Oscillation,, PNAS, 108 (2011), 11766.  doi: 10.1073/pnas.1015753108.  Google Scholar

[14]

A. J. Chorin, Gaussian fields and random flow,, J. Fluid Mech., 63 (1974), 21.  doi: 10.1017/S0022112074000991.  Google Scholar

[15]

S. C. Crow and G. H. Canavan, Relationship between a Wiener-Hermite expansion and an energy cascade,, J. Fluid Mech., 41 (1970), 387.  doi: 10.1017/S0022112070000654.  Google Scholar

[16]

T. DelSole, Predictability and information theory. I: Measures of predictability,, J. Atmos. Sci., 61 (2004), 2425.  doi: 10.1175/1520-0469(2004)061<2425:PAITPI>2.0.CO;2.  Google Scholar

[17]

T. DelSole, Stochastic models of quasigeostrophic turbulence,, Surveys in Geophys., 25 (2004), 107.   Google Scholar

[18]

T. DelSole, Predictability and information theory. II: Imperfect models,, J. Atmos. Sci., 62 (2005), 3368.  doi: 10.1175/JAS3522.1.  Google Scholar

[19]

T. DelSole and J. Shukla, Model fidelity versus skill in seasonal forecasting,, J. Climate, 23 (2010), 4794.  doi: 10.1175/2010JCLI3164.1.  Google Scholar

[20]

K. A. Emanuel, J. C. Wyngaard, J. C. McWilliams, D. A. Randall and Y. L. Yung, "Improving the Scientific Foundation for Atmosphere-Land Ocean Simulations,", Natl. Acad. Press, (2005).   Google Scholar

[21]

E. S. Epstein, Stochastic dynamic predictions,, Tellus, 21 (1969), 739.  doi: 10.1111/j.2153-3490.1969.tb00483.x.  Google Scholar

[22]

C. Franzke, D. Crommelin, A. Fischer and A. J. Majda, A hidden Markov model perspective on regimes and metastability in atmospheric flows,, J. Climate, 21 (2008), 1740.  doi: 10.1175/2007JCLI1751.1.  Google Scholar

[23]

C. Franzke, I. Horenko, A. J. Majda and R. Klein, Systematic metastable atmospheric regime identification in an AGCM,, J. Atmos. Sci., 66 (2009), 1997.  doi: 10.1175/2009JAS2939.1.  Google Scholar

[24]

P. Frauenfelder, C. Schwab and R. A. Todor, Finite elements for elliptic problems with stochastic coefficients,, Comput. Methods Appl. Mech. Eng., 194 (2005), 205.  doi: 10.1016/j.cma.2004.04.008.  Google Scholar

[25]

D. Frierson, Robust increases in midlatitude static stability in global warming simulations,, Geophys. Res. Lett., 33 (2006).  doi: 10.1029/2006GL027504.  Google Scholar

[26]

D. Frierson, Midlatitude static stability in simple and comprehensive general circulation models,, J. Atmos. Sci., 65 (2008), 1049.  doi: 10.1175/2007JAS2373.1.  Google Scholar

[27]

C. Gardiner, "Stochastic Methods: A Handbook for the Natural and Social Sciences,", Fourth edition, (2009).   Google Scholar

[28]

B. Gershgorin, J. Harlim and A. J. Majda, Improving filtering and prediction of spatially extended turbulent systems with model errors through stochastic parameter estimation,, J. Comp. Phys., 229 (2010), 32.  doi: 10.1016/j.jcp.2009.09.022.  Google Scholar

[29]

B. Gershgorin, J. Harlim and A. J. Majda, Test models for improving filtering with model errors through stochastic parameter estimation,, J. Comp. Phys., 229 (2010), 1.  doi: 10.1016/j.jcp.2009.08.019.  Google Scholar

[30]

B. Gershgorin and A. J. Majda, A test model for fluctuation-dissipation theorems with time-periodic statistics,, Physica D, 239 (2010), 1741.  doi: 10.1016/j.physd.2010.05.009.  Google Scholar

[31]

B. Gershgorin and A. J. Majda, Quantifying uncertainty for climate change and long range forecasting scenarios with model errors. I: Gaussian models,, J. Climate, (2012).   Google Scholar

[32]

B. Gershgorin and A. J. Majda, A nonlinear test model for filtering slow-fast systems,, Comm. Math. Sci., 6 (2008), 611.   Google Scholar

[33]

B. Gershgorin and A. J. Majda, Filtering a nonlinear slow-fast system with strong fast forcing,, Comm. Math. Sci., 8 (2010), 67.   Google Scholar

[34]

B. Gershgorin and A. J. Majda, Filtering a statistically exactly solvable test model for turbulent tracers from partial observations,, J. Comp. Phys., 230 (2011), 1602.  doi: 10.1016/j.jcp.2010.11.024.  Google Scholar

[35]

R. G. Ghanem and P. D. Spanos, "Stochastic Finite Elements: A Spectral Approach,", Springer-Verlag, (1991).  doi: 10.1007/978-1-4612-3094-6.  Google Scholar

[36]

D. Giannakis and A. J. Majda, Quantifying the predictive skill in long-range forecasting. I: Coarse-grained predictions in a simple ocean model,, J. Climate, (2011).  doi: 10.1175/2011JCLI4143.1.  Google Scholar

[37]

D. Giannakis and A. J. Majda, Quantifying the predictive skill in long-range forecasting. II: Model error in coarse-grained Markov models with application to ocean-circulation regimes,, J. Climate, (2011).  doi: 10.1175/JCLI-D-11-00110.1.  Google Scholar

[38]

D. Giannakis, A. J. Majda and I. Horenko, Information theory, model error, and predictive skill of stochastic models for complex nonlinear systems,, Physica D, (2011).   Google Scholar

[39]

J. P. Gollub, J. Clarke, M. Gharib, B. Lane and O. N. Mesquita, Fluctuations and transport in a stirred fluid with a mean gradient,, Phys. Rev. Lett., 67 (1991), 3507.  doi: 10.1103/PhysRevLett.67.3507.  Google Scholar

[40]

M. Hairer and A. J. Majda, A simple framework to justify linear response theory,, Nonlinearity, 23 (2010), 909.  doi: 10.1088/0951-7715/23/4/008.  Google Scholar

[41]

J. Harlim and A. J. Majda, Filtering turbulent sparsely observed geophysical flows,, Mon. Wea. Rev., 138 (2010), 1050.  doi: 10.1175/2009MWR3113.1.  Google Scholar

[42]

H. G. Matthies and A. Keese, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations,, Comput. Methods Appl. Mech. Eng., 194 (2005), 1295.  doi: 10.1016/j.cma.2004.05.027.  Google Scholar

[43]

I. Horenko, On clustering of non-stationary meteorological time series,, Dyn. Atmos. Oceans, 49 (2010), 164.  doi: 10.1016/j.dynatmoce.2009.04.003.  Google Scholar

[44]

I. Horenko, On robust estimation of low-frequency variability trends in discrete Markovian sequences of atmospheric circulation patterns,, J. Atmos. Sci., 66 (2009), 2059.  doi: 10.1175/2008JAS2959.1.  Google Scholar

[45]

I. Horenko, Finite element approach to clustering of multidimensional time series,, SIAM J. Sci. Comput., 32 (2010), 62.  doi: 10.1137/080715962.  Google Scholar

[46]

I. Horenko, On the identification of nonstationary factor models and their application to atmospheric data analysis,, J. Atmos. Sci., 67 (2010), 1559.  doi: 10.1175/2010JAS3271.1.  Google Scholar

[47]

I. Horenko, Nonstationarity in multifactor models of discrete jump processes, memory and application to cloud modeling,, J. Atmos. Sci., (2011).  doi: 10.1175/2011JAS3692.1.  Google Scholar

[48]

T. Hou, W. Luo, B. Rozovskii and H.-M. Zhou, Wiener Chaos expansions and numerical solutions of randomly forced equations of fluid mechanics,, J. Comp. Phys., 216 (2006), 687.  doi: 10.1016/j.jcp.2006.01.008.  Google Scholar

[49]

Jayesh and Z. Warhaft, Probability distribution of a passive scalar in grid-generated turbulence,, Phys. Rev. Lett., 67 (1991), 3503.  doi: 10.1103/PhysRevLett.67.3503.  Google Scholar

[50]

Jayesh and Z. Warhaft, Probability distribution, conditional dissipation, and transport of passive temperature fluctuations in grid-generated turbulence,, Phys. Fluids A, 4 (1992).  doi: 10.1063/1.858469.  Google Scholar

[51]

A. H. Jazwinski, "Stochastic Processes and Filtering Theory,", Academic Press, (1970).   Google Scholar

[52]

M. I. Jordan, Graphical models,, Statistical Science, 19 (2004), 140.  doi: 10.1214/088342304000000026.  Google Scholar

[53]

M. A. Katsoulakis, A. J. Majda and A. Sopasakis, Intermittency, metastability and coarse graining for coupled deterministic-stochastic lattice systems,, Nonlinearity, 19 (2006), 1021.  doi: 10.1088/0951-7715/19/5/002.  Google Scholar

[54]

S. R. Keating, A. J. Majda and K. S. Smith, New methods for estimating poleward eddy heat transport using satellite altimetry,, Mon. Wea. Rev., (2011).   Google Scholar

[55]

R. Kleeman, Measuring dynamical prediction utility using relative entropy,, J. Atmos. Sci., 59 (2002), 2057.  doi: 10.1175/1520-0469(2002)059<2057:MDPUUR>2.0.CO;2.  Google Scholar

[56]

P. E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations,", Applications of Mathematics (New York), (1992).   Google Scholar

[57]

R. H. Kraichnan, Small-scale structure of a scalar field convected by turbulence,, Phys. Fluids, 11 (1968), 945.  doi: 10.1063/1.1692063.  Google Scholar

[58]

R. H. Kraichnan, Eddy viscosity and diffusivity: Exact formulas and approximations,, Complex Systems, 1 (1987), 805.   Google Scholar

[59]

R. H. Kraichnan, Anomalous scaling of a randomly advected passive scalar,, Phys. Rev. Lett., 72 (1994), 1016.  doi: 10.1103/PhysRevLett.72.1016.  Google Scholar

[60]

R. H. Kraichnan, V. Yakhot and S. Chen, Scaling relations for a randomly advected passive scalar field,, Phys. Rev. Lett., 75 (1995), 240.  doi: 10.1103/PhysRevLett.75.240.  Google Scholar

[61]

S. Kullback and R. Leibler, On information and sufficiency,, Ann. Math. Stat., 22 (1951), 79.  doi: 10.1214/aoms/1177729694.  Google Scholar

[62]

O. P. Le Maître, O. Knio, H. Najm and R. Ghanem, A stochastic projection method for fluid flow. I. Basic formulation,, J. Comput. Phys., 173 (2001), 481.  doi: 10.1006/jcph.2001.6889.  Google Scholar

[63]

O. P. Le Maître, L. Mathelin, O. M. Knio and M. Y. Hussaini, Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics,, DCDS, 28 (2010), 199.  doi: 10.3934/dcds.2010.28.199.  Google Scholar

[64]

C. E. Leith, Climate response and fluctuation dissipation,, J. Atmospheric Sci., 32 (1975), 2022.  doi: 10.1175/1520-0469(1975)032<2022:CRAFD>2.0.CO;2.  Google Scholar

[65]

E. N. Lorenz, Deterministic nonperiodic flow,, J. Atmos. Sci., 20 (1963), 130.  doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.  Google Scholar

[66]

E. N. Lorenz, A study of predictability of a 28-variable atmospheric model,, Tellus, 17 (1968), 321.  doi: 10.1111/j.2153-3490.1965.tb01424.x.  Google Scholar

[67]

E. N. Lorenz, The predictability of a flow which possesses many scales of motion,, Tellus, 21 (1969), 289.  doi: 10.1111/j.2153-3490.1969.tb00444.x.  Google Scholar

[68]

W. Luo, "Wiener Chaos Expansion and Numerical Solutions of Stochastic Partial Differential Equations,", Ph.D thesis, (2006).   Google Scholar

[69]

W. Luo, "Wiener Chaos Expansion and Numerical Solutions of Stochastic PDE,", VDM Verlag, (2010).   Google Scholar

[70]

A. Majda and P. Kramer, Simplified models for turbulent diffusion: Theory, numerical modeling, and physical phenomena,, Phys. Reports, 314 (1999), 237.  doi: 10.1016/S0370-1573(98)00083-0.  Google Scholar

[71]

A. J. Majda, Real world turbulence and modern applied mathematics, in "Mathematics: Frontiers and Perspectives,", American Math. Society, (2000), 137.   Google Scholar

[72]

A. J. Majda, Challenges in Climate Science and Contemporary Applied Mathematics,, Comm. Pure Appl. Math, (2011).   Google Scholar

[73]

A. J. Majda, R. Abramov and B. Gershgorin, High skill in low frequency climate response through fluctuation dissipation theorems despite structural instability,, Proc. Natl. Acad. Sci. USA, 107 (2010), 581.  doi: 10.1073/pnas.0912997107.  Google Scholar

[74]

A. J. Majda, R. V. Abramov and M. J. Grote, "Information Theory and Stochastics for Multiscale Nonlinear Systems," CRM Monograph Series, 25,, Americal Mathematical Society, (2005).   Google Scholar

[75]

A. J. Majda, C. Franzke and D. Crommelin, Normal forms for reduced stochastic climate models,, Proc. Natl. Acad. Sci. USA, 106 (2009), 3649.  doi: 10.1073/pnas.0900173106.  Google Scholar

[76]

A. J. Majda, C. Franzke, A. Fischer and D. T. Crommelin, Distinct metastable atmospheric regimes despite nearly Gaussian statistics: A paradigm model,, Proc. Natl. Acad. Sci. USA, 103 (2006), 8309.  doi: 10.1073/pnas.0602641103.  Google Scholar

[77]

A. J. Majda, C. Franzke and B. Khouider, An applied mathematics perspective on stochastic modelling for climate,, Phil. Trans. R Soc. Lond. Ser. A Math. Phys. Eng. Sci., 366 (2008), 2429.   Google Scholar

[78]

A. J. Majda and B. Gershgorin, Quantifying uncertainty in climage change science through empirical information theory,, Proc. Natl. Acad. Sci., 107 (2010), 14958.  doi: 10.1073/pnas.1007009107.  Google Scholar

[79]

A. J. Majda and B. Gershgorin, Improving model fidelity and sensitivity for complex systems through empirical information theory,, Proc. Natl. Acad. Sci. USA, 108 (2011), 10044.  doi: 10.1073/pnas.1105174108.  Google Scholar

[80]

A. J. Majda and B. Gershgorin, Link between statistical equilibrium fidelity and forecasting skill for complex systems with model error,, Proc. Natl. Acad. Sci. USA, 108 (2011), 12599.  doi: 10.1073/pnas.1108132108.  Google Scholar

[81]

A. J. Majda, B. Gershgorin and Y. Yuan, Low-frequency climate response and fluctuation-Dissipation theorems: Theory and practice,, J. Atmos. Sci., 67 (2010), 1186.  doi: 10.1175/2009JAS3264.1.  Google Scholar

[82]

A. J. Majda and J. Harlim, Physics constrained nonlinear regression models for time series,, Nonlinearity, (2012).   Google Scholar

[83]

A. J. Majda, R. Kleeman and D. Cai, A mathematical framework for predictability through relative entropy,, Methods Appl. Anal., 9 (2002), 425.   Google Scholar

[84]

A. J. Majda, I. I. Timofeyev and E. Vanden Eijnden, A mathematical framework for stochastic climate models,, Comm. Pure Appl. Math., 54 (2001), 891.  doi: 10.1002/cpa.1014.  Google Scholar

[85]

A. J. Majda, I. I. Timofeyev and E. Vanden Eijnden, Systematic strategies for stochastic mode reduction in climate,, J. Atmos. Sci., 60 (2003), 1705.  doi: 10.1175/1520-0469(2003)060<1705:SSFSMR>2.0.CO;2.  Google Scholar

[86]

A. J. Majda and X. Wang, "Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows,", Cambridge University Press, (2006).  doi: 10.1017/CBO9780511616778.  Google Scholar

[87]

A. J. Majda and X. Wang, Linear response theory for statistical ensembles in complex systems with time-periodic forcing,, Comm. Math. Sci., 8 (2010), 145.   Google Scholar

[88]

A. J. Majda and Y. Yuan, Fundamental limitations of Ad hoc linear and quadratic multi-level regression models for physical systems,, Discrete Cont. Dyn. Systems, 17 (2010), 1333.  doi: 10.3934/dcdsb.2012.17.1333.  Google Scholar

[89]

A. J. Majda, Explicit inertial range renormalization theory in a model for turbulent diffusion,, J. Statist. Phys., 73 (1993), 515.  doi: 10.1007/BF01054338.  Google Scholar

[90]

A. J. Majda, Random shearing direction models for isotropic turbulent diffusion,, J. Statist. Phys., 25 (1994), 1153.  doi: 10.1007/BF02186761.  Google Scholar

[91]

A. J. Majda and B. Gershgorin, Elementary models for turbulent diffusion with complex physical features: Eddy diffusivity, spectrum, and intermittency,, Phil. Trans. Roy. Soc., (2011).   Google Scholar

[92]

A. J. Majda and J. Harlim, "Filtering Complex Turbulent Systems,", Cambridge University Press, (2012).  doi: 10.1017/CBO9781139061308.  Google Scholar

[93]

A. J. Majda, J. Harlim and B. Gershgorin, Mathematical strategies for filtering turbulent dynamical systems,, DCDS, 27 (2010), 441.  doi: 10.3934/dcds.2010.27.441.  Google Scholar

[94]

R. Mikulevicius and B. Rozovskii, Stochastic Navier-Stokes equations for turbulence flow,, SIAM J. Math. Anal., 35 (2004), 1250.  doi: 10.1137/S0036141002409167.  Google Scholar

[95]

N. Wiener, The Homogeneous Chaos,, Am. J. Math., 60 (1938), 897.  doi: 10.2307/2371268.  Google Scholar

[96]

N. Wiener, The use of statistical theory in the study of turbulence,, in, (1939).   Google Scholar

[97]

H. N. Najm, Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics,, in, 41 (2009), 35.   Google Scholar

[98]

J. Neelin, B. Lintner, B. Tian, Q. Li, L. Zhang, P. Patra, M. Chahine and S. Stechmann, Long tails in deep columns of natural and anthropogenic tropospheric tracers,, Geophysical Res. Lett., 37 (2010).  doi: 10.1029/2009GL041726.  Google Scholar

[99]

J. D. Neelin, M. Munnich, H. Su, J. E. Meyerson and C. E. Holloway, Tropical drying trends in global warming models and observations,, Proc Natl Acad Sci USA, 103 (2006), 6110.  doi: 10.1073/pnas.0601798103.  Google Scholar

[100]

J. Von Neumann, Some remarks on the problem of forecasting climatic fluctuations,, in, (1960), 9.   Google Scholar

[101]

B. K. Oksendal, "Stochastic Differential Equations: An Introduction with Applications,", Springer, (2010).   Google Scholar

[102]

S. A. Orszag and L. R. Bissonnette, Dynamical properties of truncated Wiener-Hermite expansions,, Phys. Fluids, 10 (1967), 2603.  doi: 10.1063/1.1762082.  Google Scholar

[103]

T. Palmer, A nonlinear dynamical perspective on model error: A proposal for nonlocal stochastic dynamic parameterizations in weather and climate prediction models,, Quart. J. Roy. Meteor. Soc., 127 (2001), 279.   Google Scholar

[104]

N. Peters, "Turbulent Combustion,", Cambridge Monographs on Mechanics, (2000).   Google Scholar

[105]

C. L. Pettit and P. S. Beran, Spectral and multiresolution Wiener expansions of oscillatory stochastic processes,, J. Sound Vib., 294 (2006), 752.  doi: 10.1016/j.jsv.2005.12.043.  Google Scholar

[106]

S. B. Pope, The probability approach to the modelling of turbulent reacting flows,, Combust. Flame, 27 (1976), 299.  doi: 10.1016/0010-2180(76)90035-3.  Google Scholar

[107]

C. Prévôt and M. Röckner, "A Concise Course on Stochastic Partial Differential Equations,", Lecture Notes in Mathematics, 1905 (2007).   Google Scholar

[108]

T. Sapsis and P. Lermusiaux, Dynamically orthogonal field equations for continuous stochastic dynamical systems,, Physica D, 238 (2009), 2347.  doi: 10.1016/j.physd.2009.09.017.  Google Scholar

[109]

T. Sapsis and P. Lermusiaux, Dynamical criteria for the evolution of the stochastic dimensionality in flows with uncertainty,, Physica D, 241 (2012), 60.  doi: 10.1016/j.physd.2011.10.001.  Google Scholar

[110]

T. Sapsis and A. J. Majda, Blended dynamic reduced subspace algorithms for uncertainty quantification in turbulent dynamical systems,, Nonlinearity, (2012).   Google Scholar

[111]

T. Sapsis and A. J. Majda, Dynamic reduced subspace and quasilinear gaussian methods for uncertainty quantification in turbulent dynamical systems,, Comm. Math. Sci., (2012).   Google Scholar

[112]

T. Sapsis and A. J. Majda, Efficient blended dynamic reduced subspace algorithms for uncertainty quantification in high-dimensional turbulent dynamical systems,, J. Comp. Phys., (2012).   Google Scholar

[113]

R.-A. Todor and C. Schwab, Sparse finite elements for elliptic problems with stochastic loading,, Numer. Math., 95 (2003), 707.  doi: 10.1007/s00211-003-0455-z.  Google Scholar

[114]

L. M. Smith and S. L. Woodruff, Renormalization-group analysis of turbulence,, in, (1998), 275.   Google Scholar

[115]

K. R. Sreenivasan, The passive scalar spectrum and the Obukhov-Corrsin constant,, Phys. Fluids, 8 (1996), 189.  doi: 10.1063/1.868826.  Google Scholar

[116]

H. Teng and G. Branstator, Initial-value predictability of prominent modes of North Pacific subsurface temperature in a CGCM,, Climate Dyn., 36 (2010), 1813.  doi: 10.1007/s00382-010-0749-7.  Google Scholar

[117]

D. M. Titterington, Bayesian methods for neural networks and related models,, Statistical Science, 19 (2004), 128.  doi: 10.1214/088342304000000099.  Google Scholar

[118]

X. Wang, Stationary statistical properties of Rayleigh-Bénard convection at large Prandtl number,, Comm. Pur. Appl. Math., 61 (2008), 789.  doi: 10.1002/cpa.20214.  Google Scholar

[119]

X. Wang, Approximation of stationary statistical properties of dissipative dynamical systems: Time discretization,, Math. Comp., 79 (2010), 259.  doi: 10.1090/S0025-5718-09-02256-X.  Google Scholar

[120]

C. K. Wikle and M. B. Hooten, A general science-based framework for dynamical spatio-temporal models,, TEST, 19 (2010), 417.  doi: 10.1007/s11749-010-0209-z.  Google Scholar

[121]

D. Xiu and G. E. Karniadakis, Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos,, Comput. Methods Appl. Mech. Engrg., 191 (2002), 4927.  doi: 10.1016/S0045-7825(02)00421-8.  Google Scholar

[122]

D. Xiu and G. E. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos,, J. Comput. Phys., 187 (2003), 137.  doi: 10.1016/S0021-9991(03)00092-5.  Google Scholar

[123]

D. Xiu, D. Lucor, C. H. Su and G. E. Karniadakis, Stochastic modeling of flow-structure interactions using generalized polynomial chaos,, J. Fluid Engrg., 124 (2002), 51.  doi: 10.1115/1.1436089.  Google Scholar

[124]

G. E. Karnidakis and D. Xiu, The Wiener-Askey polynomial chaos for stochastic differential equations,, SIAM J. Sci. Comput., 24 (2002), 619.  doi: 10.1137/S1064827501387826.  Google Scholar

[125]

Y. Yuan and A. J. Majda, Invariant measures and asymptotic bounds for normal forms of stochastic climate models,, Chin. Ann. Math. B, 32 (2010), 343.  doi: 10.1007/s11401-011-0647-2.  Google Scholar

[1]

Ioannis D. Baltas, Athanasios N. Yannacopoulos. Uncertainty and inside information. Journal of Dynamics & Games, 2016, 3 (1) : 1-24. doi: 10.3934/jdg.2016001

[2]

Alex Capaldi, Samuel Behrend, Benjamin Berman, Jason Smith, Justin Wright, Alun L. Lloyd. Parameter estimation and uncertainty quantification for an epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (3) : 553-576. doi: 10.3934/mbe.2012.9.553

[3]

Rui Wang, Denghua Zhong, Yuankun Zhang, Jia Yu, Mingchao Li. A multidimensional information model for managing construction information. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1285-1300. doi: 10.3934/jimo.2015.11.1285

[4]

Vieri Benci, C. Bonanno, Stefano Galatolo, G. Menconi, M. Virgilio. Dynamical systems and computable information. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 935-960. doi: 10.3934/dcdsb.2004.4.935

[5]

Shui-Nee Chow, Xiaojing Ye, Hongyuan Zha, Haomin Zhou. Influence prediction for continuous-time information propagation on networks. Networks & Heterogeneous Media, 2018, 13 (4) : 567-583. doi: 10.3934/nhm.2018026

[6]

Jong Soo Kim, Won Chan Jeong. A model for buyer and supplier coordination and information sharing in order-up-to systems. Journal of Industrial & Management Optimization, 2012, 8 (4) : 987-1015. doi: 10.3934/jimo.2012.8.987

[7]

José Gómez-Torrecillas, F. J. Lobillo, Gabriel Navarro. Information--bit error rate and false positives in an MDS code. Advances in Mathematics of Communications, 2015, 9 (2) : 149-168. doi: 10.3934/amc.2015.9.149

[8]

Xiaoshuang Xing, Gaofei Sun, Yong Jin, Wenyi Tang, Xiuzhen Cheng. Relay selection based on social relationship prediction and information leakage reduction for mobile social networks. Mathematical Foundations of Computing, 2018, 1 (4) : 369-382. doi: 10.3934/mfc.2018018

[9]

C. Bonanno. The algorithmic information content for randomly perturbed systems. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 921-934. doi: 10.3934/dcdsb.2004.4.921

[10]

Marcello Delitala, Tommaso Lorenzi. A mathematical model for value estimation with public information and herding. Kinetic & Related Models, 2014, 7 (1) : 29-44. doi: 10.3934/krm.2014.7.29

[11]

Jide Sun, Lili Wang. The interaction between BIM's promotion and interest game under information asymmetry. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1301-1319. doi: 10.3934/jimo.2015.11.1301

[12]

José Miguel Pasini, Tuhin Sahai. Polynomial chaos based uncertainty quantification in Hamiltonian, multi-time scale, and chaotic systems. Journal of Computational Dynamics, 2014, 1 (2) : 357-375. doi: 10.3934/jcd.2014.1.357

[13]

Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial & Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067

[14]

H. T. Banks, Robert Baraldi, Karissa Cross, Kevin Flores, Christina McChesney, Laura Poag, Emma Thorpe. Uncertainty quantification in modeling HIV viral mechanics. Mathematical Biosciences & Engineering, 2015, 12 (5) : 937-964. doi: 10.3934/mbe.2015.12.937

[15]

Ryan Bennink, Ajay Jasra, Kody J. H. Law, Pavel Lougovski. Estimation and uncertainty quantification for the output from quantum simulators. Foundations of Data Science, 2019, 1 (2) : 157-176. doi: 10.3934/fods.2019007

[16]

Jing Li, Panos Stinis. Mori-Zwanzig reduced models for uncertainty quantification. Journal of Computational Dynamics, 2019, 6 (1) : 39-68. doi: 10.3934/jcd.2019002

[17]

Xiao-Qian Jiang, Lun-Chuan Zhang. Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-927. doi: 10.3934/dcdss.2019061

[18]

Robert A. Gatenby, B. Roy Frieden. The Role of Non-Genomic Information in Maintaining Thermodynamic Stability in Living Systems. Mathematical Biosciences & Engineering, 2005, 2 (1) : 43-51. doi: 10.3934/mbe.2005.2.43

[19]

Jianping Zhang, Ke Chen, Bo Yu, Derek A. Gould. A local information based variational model for selective image segmentation. Inverse Problems & Imaging, 2014, 8 (1) : 293-320. doi: 10.3934/ipi.2014.8.293

[20]

Qing-you Yan, Juan-bo Li, Ju-liang Zhang. Licensing schemes in Stackelberg model under asymmetric information of product costs. Journal of Industrial & Management Optimization, 2007, 3 (4) : 763-774. doi: 10.3934/jimo.2007.3.763

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (30)

Other articles
by authors

[Back to Top]