Citation: |
[1] |
R. V. Abramov and A. J. Majda, Blended response algorithms for linear fluctuation-dissipation for complex nonlinear dynamical systems, Nonlinearity, 20 (2007), 2793-2821.doi: 10.1088/0951-7715/20/12/004. |
[2] |
R. V. Abramov, A. J. Majda and R. Kleeman, Information theory and predictability for low-frequency variability, J. Atmos. Sci., 62 (2005), 65-87.doi: 10.1175/JAS-3373.1. |
[3] |
A. Alexanderian, O. Le Maitre, H. Najm, M. Iskandarani and O. Knio, Multiscale Stochastic Preconditioners in Non-intrusive Spectral Projection, Journal of Scientific Computing, (2011), 1-35. |
[4] |
L. Arnold, "Random Dynamical Systems," Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. |
[5] |
M. Avellaneda and A. J. Majda, Approximate and exact renormalization theories for a model for turbulent transport, Phys. Fluids A, 4 (1992), 41-57.doi: 10.1063/1.858499. |
[6] |
M. Avellaneda and A. J. Majda, Renormalization theory for eddy diffusivity in turbulent transport, Phys. Rev. Lett., 68 (1992), 3028-3031.doi: 10.1103/PhysRevLett.68.3028. |
[7] |
M. Avellaneda and A. J. Majda, Simple examples with features of renormalization for turbulent transport, Phil. Trans. R. Soc. Lond. A, 346 (1994), 205-233.doi: 10.1098/rsta.1994.0019. |
[8] |
A. Bourlioux and A. J. Majda, An elementary model for the validation of flamelet approximations in non-premixed turbulent combustion, Combust. Theory Model., 4 (2000), 189-210.doi: 10.1088/1364-7830/4/2/307. |
[9] |
M. Branicki, B. Gershgorin and A. J. Majda, Filtering skill for turbulent signals for a suite of nonlinear and linear kalman filters, J. Comp. Phys, 231 (2012), 1462-1498.doi: 10.1016/j.jcp.2011.10.029. |
[10] |
M. Branicki and A. J. Majda, Quantifying uncertainty for long range forecasting scenarios with model errors in non-Guassian models with intermittency, Nonlinearity, submitted, 2012. |
[11] |
G. Branstator and H. Teng, Two limits of initial-value decadal predictability in a CGCM, J. Climate, 23 (2010), 6292-6311.doi: 10.1175/2010JCLI3678.1. |
[12] |
R. H. Cameron and W. T. Martin, The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals, Ann. Math. (2), 48 (1947), 385-392.doi: 10.2307/1969178. |
[13] |
M. D. Chekroun, D. Kondrashov and M. Ghil, Predicting stochastic systems by noise sampling, and application to the El Niño-Southern Oscillation, PNAS, 108 (2011), 11766-11771.doi: 10.1073/pnas.1015753108. |
[14] |
A. J. Chorin, Gaussian fields and random flow, J. Fluid Mech., 63 (1974), 21-32.doi: 10.1017/S0022112074000991. |
[15] |
S. C. Crow and G. H. Canavan, Relationship between a Wiener-Hermite expansion and an energy cascade, J. Fluid Mech., 41 (1970), 387-403.doi: 10.1017/S0022112070000654. |
[16] |
T. DelSole, Predictability and information theory. I: Measures of predictability, J. Atmos. Sci., 61 (2004), 2425-2440.doi: 10.1175/1520-0469(2004)061<2425:PAITPI>2.0.CO;2. |
[17] |
T. DelSole, Stochastic models of quasigeostrophic turbulence, Surveys in Geophys., 25 (2004), 107-149. |
[18] |
T. DelSole, Predictability and information theory. II: Imperfect models, J. Atmos. Sci., 62 (2005), 3368-3381.doi: 10.1175/JAS3522.1. |
[19] |
T. DelSole and J. Shukla, Model fidelity versus skill in seasonal forecasting, J. Climate, 23 (2010), 4794-4806.doi: 10.1175/2010JCLI3164.1. |
[20] |
K. A. Emanuel, J. C. Wyngaard, J. C. McWilliams, D. A. Randall and Y. L. Yung, "Improving the Scientific Foundation for Atmosphere-Land Ocean Simulations," Natl. Acad. Press, Washington DC, 2005. |
[21] |
E. S. Epstein, Stochastic dynamic predictions, Tellus, 21 (1969), 739-759.doi: 10.1111/j.2153-3490.1969.tb00483.x. |
[22] |
C. Franzke, D. Crommelin, A. Fischer and A. J. Majda, A hidden Markov model perspective on regimes and metastability in atmospheric flows, J. Climate, 21 (2008), 1740-1757.doi: 10.1175/2007JCLI1751.1. |
[23] |
C. Franzke, I. Horenko, A. J. Majda and R. Klein, Systematic metastable atmospheric regime identification in an AGCM, J. Atmos. Sci., 66 (2009), 1997-2012.doi: 10.1175/2009JAS2939.1. |
[24] |
P. Frauenfelder, C. Schwab and R. A. Todor, Finite elements for elliptic problems with stochastic coefficients, Comput. Methods Appl. Mech. Eng., 194 (2005), 205-228.doi: 10.1016/j.cma.2004.04.008. |
[25] |
D. Frierson, Robust increases in midlatitude static stability in global warming simulations, Geophys. Res. Lett., 33 (2006), L24816.doi: 10.1029/2006GL027504. |
[26] |
D. Frierson, Midlatitude static stability in simple and comprehensive general circulation models, J. Atmos. Sci., 65 (2008), 1049-1062.doi: 10.1175/2007JAS2373.1. |
[27] |
C. Gardiner, "Stochastic Methods: A Handbook for the Natural and Social Sciences," Fourth edition, Springer Series in Synergetics, Springer-Verlag, Berlin, 2009. |
[28] |
B. Gershgorin, J. Harlim and A. J. Majda, Improving filtering and prediction of spatially extended turbulent systems with model errors through stochastic parameter estimation, J. Comp. Phys., 229 (2010), 32-57.doi: 10.1016/j.jcp.2009.09.022. |
[29] |
B. Gershgorin, J. Harlim and A. J. Majda, Test models for improving filtering with model errors through stochastic parameter estimation, J. Comp. Phys., 229 (2010), 1-31.doi: 10.1016/j.jcp.2009.08.019. |
[30] |
B. Gershgorin and A. J. Majda, A test model for fluctuation-dissipation theorems with time-periodic statistics, Physica D, 239 (2010), 1741-1757.doi: 10.1016/j.physd.2010.05.009. |
[31] |
B. Gershgorin and A. J. Majda, Quantifying uncertainty for climate change and long range forecasting scenarios with model errors. I: Gaussian models, J. Climate, in press, 2012. |
[32] |
B. Gershgorin and A. J. Majda, A nonlinear test model for filtering slow-fast systems, Comm. Math. Sci., 6 (2008), 611-650. |
[33] |
B. Gershgorin and A. J. Majda, Filtering a nonlinear slow-fast system with strong fast forcing, Comm. Math. Sci., 8 (2010), 67-92. |
[34] |
B. Gershgorin and A. J. Majda, Filtering a statistically exactly solvable test model for turbulent tracers from partial observations, J. Comp. Phys., 230 (2011), 1602-1638.doi: 10.1016/j.jcp.2010.11.024. |
[35] |
R. G. Ghanem and P. D. Spanos, "Stochastic Finite Elements: A Spectral Approach," Springer-Verlag, New York, 1991.doi: 10.1007/978-1-4612-3094-6. |
[36] |
D. Giannakis and A. J. Majda, Quantifying the predictive skill in long-range forecasting. I: Coarse-grained predictions in a simple ocean model, J. Climate, in press, 2011.doi: 10.1175/2011JCLI4143.1. |
[37] |
D. Giannakis and A. J. Majda, Quantifying the predictive skill in long-range forecasting. II: Model error in coarse-grained Markov models with application to ocean-circulation regimes, J. Climate, in press, 2011.doi: 10.1175/JCLI-D-11-00110.1. |
[38] |
D. Giannakis, A. J. Majda and I. Horenko, Information theory, model error, and predictive skill of stochastic models for complex nonlinear systems, Physica D, submitted, 2011. |
[39] |
J. P. Gollub, J. Clarke, M. Gharib, B. Lane and O. N. Mesquita, Fluctuations and transport in a stirred fluid with a mean gradient, Phys. Rev. Lett., 67 (1991), 3507-3510.doi: 10.1103/PhysRevLett.67.3507. |
[40] |
M. Hairer and A. J. Majda, A simple framework to justify linear response theory, Nonlinearity, 23 (2010), 909-922.doi: 10.1088/0951-7715/23/4/008. |
[41] |
J. Harlim and A. J. Majda, Filtering turbulent sparsely observed geophysical flows, Mon. Wea. Rev., 138 (2010), 1050-1083.doi: 10.1175/2009MWR3113.1. |
[42] |
H. G. Matthies and A. Keese, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Eng., 194 (2005), 1295-1331.doi: 10.1016/j.cma.2004.05.027. |
[43] |
I. Horenko, On clustering of non-stationary meteorological time series, Dyn. Atmos. Oceans, 49 (2010), 164-187.doi: 10.1016/j.dynatmoce.2009.04.003. |
[44] |
I. Horenko, On robust estimation of low-frequency variability trends in discrete Markovian sequences of atmospheric circulation patterns, J. Atmos. Sci., 66 (2009), 2059-2072.doi: 10.1175/2008JAS2959.1. |
[45] |
I. Horenko, Finite element approach to clustering of multidimensional time series, SIAM J. Sci. Comput., 32 (2010), 62-83.doi: 10.1137/080715962. |
[46] |
I. Horenko, On the identification of nonstationary factor models and their application to atmospheric data analysis, J. Atmos. Sci., 67 (2010), 1559-1574.doi: 10.1175/2010JAS3271.1. |
[47] |
I. Horenko, Nonstationarity in multifactor models of discrete jump processes, memory and application to cloud modeling, J. Atmos. Sci., 2011.doi: 10.1175/2011JAS3692.1. |
[48] |
T. Hou, W. Luo, B. Rozovskii and H.-M. Zhou, Wiener Chaos expansions and numerical solutions of randomly forced equations of fluid mechanics, J. Comp. Phys., 216 (2006), 687-706.doi: 10.1016/j.jcp.2006.01.008. |
[49] |
Jayesh and Z. Warhaft, Probability distribution of a passive scalar in grid-generated turbulence, Phys. Rev. Lett., 67 (1991), 3503-3506.doi: 10.1103/PhysRevLett.67.3503. |
[50] |
Jayesh and Z. Warhaft, Probability distribution, conditional dissipation, and transport of passive temperature fluctuations in grid-generated turbulence, Phys. Fluids A, 4 (1992), 2292.doi: 10.1063/1.858469. |
[51] |
A. H. Jazwinski, "Stochastic Processes and Filtering Theory," Academic Press, New York, 1970. |
[52] |
M. I. Jordan, Graphical models, Statistical Science, 19 (2004), 140-155.doi: 10.1214/088342304000000026. |
[53] |
M. A. Katsoulakis, A. J. Majda and A. Sopasakis, Intermittency, metastability and coarse graining for coupled deterministic-stochastic lattice systems, Nonlinearity, 19 (2006), 1021-1047.doi: 10.1088/0951-7715/19/5/002. |
[54] |
S. R. Keating, A. J. Majda and K. S. Smith, New methods for estimating poleward eddy heat transport using satellite altimetry, Mon. Wea. Rev., in press, 2011. |
[55] |
R. Kleeman, Measuring dynamical prediction utility using relative entropy, J. Atmos. Sci., 59 (2002), 2057-2072.doi: 10.1175/1520-0469(2002)059<2057:MDPUUR>2.0.CO;2. |
[56] |
P. E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations," Applications of Mathematics (New York), Springer-Verlag, Berlin, 1992. |
[57] |
R. H. Kraichnan, Small-scale structure of a scalar field convected by turbulence, Phys. Fluids, 11 (1968), 945-953.doi: 10.1063/1.1692063. |
[58] |
R. H. Kraichnan, Eddy viscosity and diffusivity: Exact formulas and approximations, Complex Systems, 1 (1987), 805-820. |
[59] |
R. H. Kraichnan, Anomalous scaling of a randomly advected passive scalar, Phys. Rev. Lett., 72 (1994), 1016-1019.doi: 10.1103/PhysRevLett.72.1016. |
[60] |
R. H. Kraichnan, V. Yakhot and S. Chen, Scaling relations for a randomly advected passive scalar field, Phys. Rev. Lett., 75 (1995), 240-243.doi: 10.1103/PhysRevLett.75.240. |
[61] |
S. Kullback and R. Leibler, On information and sufficiency, Ann. Math. Stat., 22 (1951), 79-86.doi: 10.1214/aoms/1177729694. |
[62] |
O. P. Le Maître, O. Knio, H. Najm and R. Ghanem, A stochastic projection method for fluid flow. I. Basic formulation, J. Comput. Phys., 173 (2001), 481-511.doi: 10.1006/jcph.2001.6889. |
[63] |
O. P. Le Maître, L. Mathelin, O. M. Knio and M. Y. Hussaini, Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics, DCDS, 28 (2010), 199-226.doi: 10.3934/dcds.2010.28.199. |
[64] |
C. E. Leith, Climate response and fluctuation dissipation, J. Atmospheric Sci., 32 (1975), 2022-2025.doi: 10.1175/1520-0469(1975)032<2022:CRAFD>2.0.CO;2. |
[65] |
E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., 20 (1963), 130-141.doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. |
[66] |
E. N. Lorenz, A study of predictability of a 28-variable atmospheric model, Tellus, 17 (1968), 321-333.doi: 10.1111/j.2153-3490.1965.tb01424.x. |
[67] |
E. N. Lorenz, The predictability of a flow which possesses many scales of motion, Tellus, 21 (1969), 289-307.doi: 10.1111/j.2153-3490.1969.tb00444.x. |
[68] |
W. Luo, "Wiener Chaos Expansion and Numerical Solutions of Stochastic Partial Differential Equations," Ph.D thesis, Caltech, 2006. |
[69] |
W. Luo, "Wiener Chaos Expansion and Numerical Solutions of Stochastic PDE," VDM Verlag, 2010. |
[70] |
A. Majda and P. Kramer, Simplified models for turbulent diffusion: Theory, numerical modeling, and physical phenomena, Phys. Reports, 314 (1999), 237-574.doi: 10.1016/S0370-1573(98)00083-0. |
[71] |
A. J. Majda, Real world turbulence and modern applied mathematics, in "Mathematics: Frontiers and Perspectives," American Math. Society, Providence, RI, (2000), 137-151. |
[72] |
A. J. Majda, Challenges in Climate Science and Contemporary Applied Mathematics, Comm. Pure Appl. Math, in press, 2011. |
[73] |
A. J. Majda, R. Abramov and B. Gershgorin, High skill in low frequency climate response through fluctuation dissipation theorems despite structural instability, Proc. Natl. Acad. Sci. USA, 107 (2010), 581-586.doi: 10.1073/pnas.0912997107. |
[74] |
A. J. Majda, R. V. Abramov and M. J. Grote, "Information Theory and Stochastics for Multiscale Nonlinear Systems," CRM Monograph Series, 25, Americal Mathematical Society, Providence, RI, 2005. |
[75] |
A. J. Majda, C. Franzke and D. Crommelin, Normal forms for reduced stochastic climate models, Proc. Natl. Acad. Sci. USA, 106 (2009), 3649-3653.doi: 10.1073/pnas.0900173106. |
[76] |
A. J. Majda, C. Franzke, A. Fischer and D. T. Crommelin, Distinct metastable atmospheric regimes despite nearly Gaussian statistics: A paradigm model, Proc. Natl. Acad. Sci. USA, 103 (2006), 8309-8314.doi: 10.1073/pnas.0602641103. |
[77] |
A. J. Majda, C. Franzke and B. Khouider, An applied mathematics perspective on stochastic modelling for climate, Phil. Trans. R Soc. Lond. Ser. A Math. Phys. Eng. Sci., 366 (2008), 2429-2455. |
[78] |
A. J. Majda and B. Gershgorin, Quantifying uncertainty in climage change science through empirical information theory, Proc. Natl. Acad. Sci., 107 (2010), 14958-14963.doi: 10.1073/pnas.1007009107. |
[79] |
A. J. Majda and B. Gershgorin, Improving model fidelity and sensitivity for complex systems through empirical information theory, Proc. Natl. Acad. Sci. USA, 108 (2011), 10044-10049.doi: 10.1073/pnas.1105174108. |
[80] |
A. J. Majda and B. Gershgorin, Link between statistical equilibrium fidelity and forecasting skill for complex systems with model error, Proc. Natl. Acad. Sci. USA, 108 (2011), 12599-12604.doi: 10.1073/pnas.1108132108. |
[81] |
A. J. Majda, B. Gershgorin and Y. Yuan, Low-frequency climate response and fluctuation-Dissipation theorems: Theory and practice, J. Atmos. Sci., 67 (2010), 1186-1201.doi: 10.1175/2009JAS3264.1. |
[82] |
A. J. Majda and J. Harlim, Physics constrained nonlinear regression models for time series, Nonlinearity, submitted, 2012. |
[83] |
A. J. Majda, R. Kleeman and D. Cai, A mathematical framework for predictability through relative entropy, Methods Appl. Anal., 9 (2002), 425-444. |
[84] |
A. J. Majda, I. I. Timofeyev and E. Vanden Eijnden, A mathematical framework for stochastic climate models, Comm. Pure Appl. Math., 54 (2001), 891-974.doi: 10.1002/cpa.1014. |
[85] |
A. J. Majda, I. I. Timofeyev and E. Vanden Eijnden, Systematic strategies for stochastic mode reduction in climate, J. Atmos. Sci., 60 (2003), 1705-1722.doi: 10.1175/1520-0469(2003)060<1705:SSFSMR>2.0.CO;2. |
[86] |
A. J. Majda and X. Wang, "Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows," Cambridge University Press, Cambridge, 2006.doi: 10.1017/CBO9780511616778. |
[87] |
A. J. Majda and X. Wang, Linear response theory for statistical ensembles in complex systems with time-periodic forcing, Comm. Math. Sci., 8 (2010), 145-172. |
[88] |
A. J. Majda and Y. Yuan, Fundamental limitations of Ad hoc linear and quadratic multi-level regression models for physical systems, Discrete Cont. Dyn. Systems, 17 (2010), 1333-1363.doi: 10.3934/dcdsb.2012.17.1333. |
[89] |
A. J. Majda, Explicit inertial range renormalization theory in a model for turbulent diffusion, J. Statist. Phys., 73 (1993), 515-542.doi: 10.1007/BF01054338. |
[90] |
A. J. Majda, Random shearing direction models for isotropic turbulent diffusion, J. Statist. Phys., 25 (1994), 1153-1165.doi: 10.1007/BF02186761. |
[91] |
A. J. Majda and B. Gershgorin, Elementary models for turbulent diffusion with complex physical features: Eddy diffusivity, spectrum, and intermittency, Phil. Trans. Roy. Soc., in press, 2011. |
[92] |
A. J. Majda and J. Harlim, "Filtering Complex Turbulent Systems," Cambridge University Press, 2012.doi: 10.1017/CBO9781139061308. |
[93] |
A. J. Majda, J. Harlim and B. Gershgorin, Mathematical strategies for filtering turbulent dynamical systems, DCDS, 27 (2010), 441-486.doi: 10.3934/dcds.2010.27.441. |
[94] |
R. Mikulevicius and B. Rozovskii, Stochastic Navier-Stokes equations for turbulence flow, SIAM J. Math. Anal., 35 (2004), 1250-1310.doi: 10.1137/S0036141002409167. |
[95] |
N. Wiener, The Homogeneous Chaos, Am. J. Math., 60 (1938), 897-936.doi: 10.2307/2371268. |
[96] |
N. Wiener, The use of statistical theory in the study of turbulence, in "Proc. Fifth Int. Cong. Appl. Mech.," Wiley, New York, (1939), 356. |
[97] |
H. N. Najm, Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics, in "Annu. Rev. Fluid Mech.," 41, Annual Reviews, Palo Alto, CA, (2009), 35-52. |
[98] |
J. Neelin, B. Lintner, B. Tian, Q. Li, L. Zhang, P. Patra, M. Chahine and S. Stechmann, Long tails in deep columns of natural and anthropogenic tropospheric tracers, Geophysical Res. Lett., 37 (2010), L05804.doi: 10.1029/2009GL041726. |
[99] |
J. D. Neelin, M. Munnich, H. Su, J. E. Meyerson and C. E. Holloway, Tropical drying trends in global warming models and observations, Proc Natl Acad Sci USA, 103 (2006), 6110-6115.doi: 10.1073/pnas.0601798103. |
[100] |
J. Von Neumann, Some remarks on the problem of forecasting climatic fluctuations, in "Dynamics of Climate," (ed. R. L. Preffer), Pergamon Press, New York, (1960), 9-11. |
[101] |
B. K. Oksendal, "Stochastic Differential Equations: An Introduction with Applications," Springer, 2010. |
[102] |
S. A. Orszag and L. R. Bissonnette, Dynamical properties of truncated Wiener-Hermite expansions, Phys. Fluids, 10 (1967), 2603-2613.doi: 10.1063/1.1762082. |
[103] |
T. Palmer, A nonlinear dynamical perspective on model error: A proposal for nonlocal stochastic dynamic parameterizations in weather and climate prediction models, Quart. J. Roy. Meteor. Soc., 127 (2001), 279-303. |
[104] |
N. Peters, "Turbulent Combustion," Cambridge Monographs on Mechanics, Cambridge University Press, 2000. |
[105] |
C. L. Pettit and P. S. Beran, Spectral and multiresolution Wiener expansions of oscillatory stochastic processes, J. Sound Vib., 294 (2006), 752-779.doi: 10.1016/j.jsv.2005.12.043. |
[106] |
S. B. Pope, The probability approach to the modelling of turbulent reacting flows, Combust. Flame, 27 (1976), 299-312.doi: 10.1016/0010-2180(76)90035-3. |
[107] |
C. Prévôt and M. Röckner, "A Concise Course on Stochastic Partial Differential Equations," Lecture Notes in Mathematics, 1905, Springer, Berlin, 2007. |
[108] |
T. Sapsis and P. Lermusiaux, Dynamically orthogonal field equations for continuous stochastic dynamical systems, Physica D, 238 (2009), 2347-2360.doi: 10.1016/j.physd.2009.09.017. |
[109] |
T. Sapsis and P. Lermusiaux, Dynamical criteria for the evolution of the stochastic dimensionality in flows with uncertainty, Physica D, 241 (2012), 60-76.doi: 10.1016/j.physd.2011.10.001. |
[110] |
T. Sapsis and A. J. Majda, Blended dynamic reduced subspace algorithms for uncertainty quantification in turbulent dynamical systems, Nonlinearity, in preparation, 2012. |
[111] |
T. Sapsis and A. J. Majda, Dynamic reduced subspace and quasilinear gaussian methods for uncertainty quantification in turbulent dynamical systems, Comm. Math. Sci., in preparation, 2012. |
[112] |
T. Sapsis and A. J. Majda, Efficient blended dynamic reduced subspace algorithms for uncertainty quantification in high-dimensional turbulent dynamical systems, J. Comp. Phys., in preparation, 2012. |
[113] |
R.-A. Todor and C. Schwab, Sparse finite elements for elliptic problems with stochastic loading, Numer. Math., 95 (2003), 707-734.doi: 10.1007/s00211-003-0455-z. |
[114] |
L. M. Smith and S. L. Woodruff, Renormalization-group analysis of turbulence, in "Annu. Rev. Fluid Mech.," Vol. 30, Annual Reviews, Palo Alto, CA, (1998), 275-310. |
[115] |
K. R. Sreenivasan, The passive scalar spectrum and the Obukhov-Corrsin constant, Phys. Fluids, 8 (1996), 189-196.doi: 10.1063/1.868826. |
[116] |
H. Teng and G. Branstator, Initial-value predictability of prominent modes of North Pacific subsurface temperature in a CGCM, Climate Dyn., 36 (2010), 1813-1834.doi: 10.1007/s00382-010-0749-7. |
[117] |
D. M. Titterington, Bayesian methods for neural networks and related models, Statistical Science, 19 (2004), 128-139.doi: 10.1214/088342304000000099. |
[118] |
X. Wang, Stationary statistical properties of Rayleigh-Bénard convection at large Prandtl number, Comm. Pur. Appl. Math., 61 (2008), 789-815.doi: 10.1002/cpa.20214. |
[119] |
X. Wang, Approximation of stationary statistical properties of dissipative dynamical systems: Time discretization, Math. Comp., 79 (2010), 259-280.doi: 10.1090/S0025-5718-09-02256-X. |
[120] |
C. K. Wikle and M. B. Hooten, A general science-based framework for dynamical spatio-temporal models, TEST, 19 (2010), 417-451.doi: 10.1007/s11749-010-0209-z. |
[121] |
D. Xiu and G. E. Karniadakis, Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos, Comput. Methods Appl. Mech. Engrg., 191 (2002), 4927-4948.doi: 10.1016/S0045-7825(02)00421-8. |
[122] |
D. Xiu and G. E. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos, J. Comput. Phys., 187 (2003), 137-167.doi: 10.1016/S0021-9991(03)00092-5. |
[123] |
D. Xiu, D. Lucor, C. H. Su and G. E. Karniadakis, Stochastic modeling of flow-structure interactions using generalized polynomial chaos, J. Fluid Engrg., 124 (2002), 51-59.doi: 10.1115/1.1436089. |
[124] |
G. E. Karnidakis and D. Xiu, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24 (2002), 619-644.doi: 10.1137/S1064827501387826. |
[125] |
Y. Yuan and A. J. Majda, Invariant measures and asymptotic bounds for normal forms of stochastic climate models, Chin. Ann. Math. B, 32 (2010), 343-368.doi: 10.1007/s11401-011-0647-2. |