September  2012, 32(9): 3245-3301. doi: 10.3934/dcds.2012.32.3245

Symbolic dynamics for the $N$-centre problem at negative energies

1. 

Università di Milano Bicocca - Dipartimento di Matematica e Applicazioni, Via Cozzi 53, 20125 Milano, Italy

2. 

Università di Milano Bicocca, Dipartimento di Matematica e Applicazioni, Via Cozzi 53, 20125 Milano

Received  February 2012 Revised  March 2012 Published  April 2012

We consider the planar $N$-centre problem, with homogeneous potentials of degree $-\alpha < 0$, $\alpha \in [1,2)$. We prove the existence of infinitely many collisions-free periodic solutions with negative and small energy, for any distribution of the centres inside a compact set. The proof is based upon topological, variational and geometric arguments. The existence result allows to characterize the associated dynamical system with a symbolic dynamics, where the symbols are the partitions of the $N$ centres in two non-empty sets.
Citation: Nicola Soave, Susanna Terracini. Symbolic dynamics for the $N$-centre problem at negative energies. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3245-3301. doi: 10.3934/dcds.2012.32.3245
References:
[1]

A. Ambrosetti and V. Coti Zelati, "Periodic Solutions of Singular Lagrangian Systems,", Birkhäuser, (1993).

[2]

V. Barutello, S. Terracini and G. Verzini, Entire parabolic trajectories as minimal phase transitions,, preprint, (2011).

[3]

V. Barutello, S. Terracini and G. Verzini, Entire minimal parabolic trajectories: The planar anisotropic Kepler problem,, preprint, (2011).

[4]

V. Barutello, D. L. Ferrario and S. Terracini, On the singularities of generalized solutions to $n$-body-type problems,, Int. Math. Res. Notices IMRN, 2008 ().

[5]

S. V. Bolotin, Nonintegrability of the $n$-center problem for $n>2$,, Mosc. Univ. Mech. Bull., 39 (1984), 24.

[6]

S. V. Bolotin and P. Negrini, Regularization and topological entropy for the spatial $n$-center problem,, Ergodic Theory Dyn. Systems, 21 (2001), 383. doi: 10.1017/S0143385701001195.

[7]

S. V. Bolotin and P. Negrini, Chaotic behaviour in the $3$-center problem,, J. Differential Equations, 190 (2003), 539.

[8]

H. Brezis, "Analyse Fonctionnelle, Théorie et Applications,", Colletion Mathématiques Appliquées por la Maîtrise, (1983).

[9]

R. Castelli, "On the Variational Approach to the One and N-Centre Problem with Weak Forces,", Ph.D Thesis, (2009).

[10]

K.-C. Chen, Existence and minimizing properties of retrograde orbits to the three-body problem with various choices of masses,, Ann. of Math. (2), 167 (2008), 325. doi: 10.4007/annals.2008.167.325.

[11]

K.-C. Chen, Variational constructions for some satellite orbits in periodic gravitational force fields,, Amer. J. Math., 132 (2010), 681. doi: 10.1353/ajm.0.0124.

[12]

L. Dimare, Chaotic quasi-collision trajectories in the $3$-centre problem,, Celest. Mech Dyn. Astr., 107 (2010), 427. doi: 10.1007/s10569-010-9284-4.

[13]

M. P. Do Carmo, "Riemaniann Geometry,", Series of Mathematics, (1992).

[14]

P. Felmer and K. Tanaka, Scattering solutions for planar singular Hamiltonian systems via minimization,, Adv. Differential Equations, 5 (2000), 1519.

[15]

D. L. Ferrario, Transitive decomposition of symmetry groups for the n-body problem,, Adv. Math., 213 (2007), 763. doi: 10.1016/j.aim.2007.01.009.

[16]

G. Fusco, G. F. Gronchi and P. Negrini, Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem,, Inv. Math., 185 (2011), 283. doi: 10.1007/s00222-010-0306-3.

[17]

M. Klein and A. Knauf, "Classical Planar Scattering by Coulombic Potentials,", Lecture Notes in Physics, (1992).

[18]

A. Knauf, The n-centre problem of celestial mechanics for large energies,, J. Eur. Math. Soc., 4 (2002), 1. doi: 10.1007/s100970100037.

[19]

A. Knauf and M. Krapf, The escape rate of a molecule,, Math. Phys. Anal. Geom., 13 (2010), 159. doi: 10.1007/s11040-010-9073-z.

[20]

A. Knauf and I. A. Taimanov, On the integrability of the $n$-centre problem,, Math. Ann., 331 (2005), 631. doi: 10.1007/s00208-004-0598-y.

[21]

T. Levi-Civita, Sur la régularisation du problème des trois corps,, Acta Math., 42 (1920), 99. doi: 10.1007/BF02404404.

[22]

C. Marchal, How the method of minimization of action avoids singularities,, Cel. Mech. Dyn. Ast., 83 (2002), 325. doi: 10.1023/A:1020128408706.

[23]

C. Moore, Braids in classical dynamics,, Phys. Rev. Lett., 70 (1993), 3675. doi: 10.1103/PhysRevLett.70.3675.

[24]

J. Moser, Regularization of Kepler's problem and the averaging method on a manifold,, Comm. Pure. Appl. Math., 23 (1970), 609. doi: 10.1002/cpa.3160230406.

[25]

H. Seifert, Periodischer bewegungen mechanischer system,, Math. Zeit, 51 (1948), 197. doi: 10.1007/BF01291002.

[26]

S. Terracini and A. Venturelli, Symmetric trajectories for the $2N$-body problem with equal masses,, Arch. Ration. Mech. Anal., 184 (2007), 465. doi: 10.1007/s00205-006-0030-8.

[27]

A. Venturelli, Une caractérisation variationelle des solutions de Lagrange du probl\`eme plan des trois corps,, Comp. Rend. Acad. Sci. Paris Sér. I Math., 332 (2001), 641.

[28]

A. Venturelli, "Application de la Minimisation de l'Action au Problème de N Corps Dans le Plan e Dans lÉspace,", Ph.D Thesis, (2002).

[29]

A. Wintner, "The Analytical Foundations of Celestial Mechanics,", Princeton University Press, (1941).

[30]

E. T. Whittaker, "A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: With an Introduction to the Problem of Three Bodies,", Cambridge University Press, (1959).

show all references

References:
[1]

A. Ambrosetti and V. Coti Zelati, "Periodic Solutions of Singular Lagrangian Systems,", Birkhäuser, (1993).

[2]

V. Barutello, S. Terracini and G. Verzini, Entire parabolic trajectories as minimal phase transitions,, preprint, (2011).

[3]

V. Barutello, S. Terracini and G. Verzini, Entire minimal parabolic trajectories: The planar anisotropic Kepler problem,, preprint, (2011).

[4]

V. Barutello, D. L. Ferrario and S. Terracini, On the singularities of generalized solutions to $n$-body-type problems,, Int. Math. Res. Notices IMRN, 2008 ().

[5]

S. V. Bolotin, Nonintegrability of the $n$-center problem for $n>2$,, Mosc. Univ. Mech. Bull., 39 (1984), 24.

[6]

S. V. Bolotin and P. Negrini, Regularization and topological entropy for the spatial $n$-center problem,, Ergodic Theory Dyn. Systems, 21 (2001), 383. doi: 10.1017/S0143385701001195.

[7]

S. V. Bolotin and P. Negrini, Chaotic behaviour in the $3$-center problem,, J. Differential Equations, 190 (2003), 539.

[8]

H. Brezis, "Analyse Fonctionnelle, Théorie et Applications,", Colletion Mathématiques Appliquées por la Maîtrise, (1983).

[9]

R. Castelli, "On the Variational Approach to the One and N-Centre Problem with Weak Forces,", Ph.D Thesis, (2009).

[10]

K.-C. Chen, Existence and minimizing properties of retrograde orbits to the three-body problem with various choices of masses,, Ann. of Math. (2), 167 (2008), 325. doi: 10.4007/annals.2008.167.325.

[11]

K.-C. Chen, Variational constructions for some satellite orbits in periodic gravitational force fields,, Amer. J. Math., 132 (2010), 681. doi: 10.1353/ajm.0.0124.

[12]

L. Dimare, Chaotic quasi-collision trajectories in the $3$-centre problem,, Celest. Mech Dyn. Astr., 107 (2010), 427. doi: 10.1007/s10569-010-9284-4.

[13]

M. P. Do Carmo, "Riemaniann Geometry,", Series of Mathematics, (1992).

[14]

P. Felmer and K. Tanaka, Scattering solutions for planar singular Hamiltonian systems via minimization,, Adv. Differential Equations, 5 (2000), 1519.

[15]

D. L. Ferrario, Transitive decomposition of symmetry groups for the n-body problem,, Adv. Math., 213 (2007), 763. doi: 10.1016/j.aim.2007.01.009.

[16]

G. Fusco, G. F. Gronchi and P. Negrini, Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem,, Inv. Math., 185 (2011), 283. doi: 10.1007/s00222-010-0306-3.

[17]

M. Klein and A. Knauf, "Classical Planar Scattering by Coulombic Potentials,", Lecture Notes in Physics, (1992).

[18]

A. Knauf, The n-centre problem of celestial mechanics for large energies,, J. Eur. Math. Soc., 4 (2002), 1. doi: 10.1007/s100970100037.

[19]

A. Knauf and M. Krapf, The escape rate of a molecule,, Math. Phys. Anal. Geom., 13 (2010), 159. doi: 10.1007/s11040-010-9073-z.

[20]

A. Knauf and I. A. Taimanov, On the integrability of the $n$-centre problem,, Math. Ann., 331 (2005), 631. doi: 10.1007/s00208-004-0598-y.

[21]

T. Levi-Civita, Sur la régularisation du problème des trois corps,, Acta Math., 42 (1920), 99. doi: 10.1007/BF02404404.

[22]

C. Marchal, How the method of minimization of action avoids singularities,, Cel. Mech. Dyn. Ast., 83 (2002), 325. doi: 10.1023/A:1020128408706.

[23]

C. Moore, Braids in classical dynamics,, Phys. Rev. Lett., 70 (1993), 3675. doi: 10.1103/PhysRevLett.70.3675.

[24]

J. Moser, Regularization of Kepler's problem and the averaging method on a manifold,, Comm. Pure. Appl. Math., 23 (1970), 609. doi: 10.1002/cpa.3160230406.

[25]

H. Seifert, Periodischer bewegungen mechanischer system,, Math. Zeit, 51 (1948), 197. doi: 10.1007/BF01291002.

[26]

S. Terracini and A. Venturelli, Symmetric trajectories for the $2N$-body problem with equal masses,, Arch. Ration. Mech. Anal., 184 (2007), 465. doi: 10.1007/s00205-006-0030-8.

[27]

A. Venturelli, Une caractérisation variationelle des solutions de Lagrange du probl\`eme plan des trois corps,, Comp. Rend. Acad. Sci. Paris Sér. I Math., 332 (2001), 641.

[28]

A. Venturelli, "Application de la Minimisation de l'Action au Problème de N Corps Dans le Plan e Dans lÉspace,", Ph.D Thesis, (2002).

[29]

A. Wintner, "The Analytical Foundations of Celestial Mechanics,", Princeton University Press, (1941).

[30]

E. T. Whittaker, "A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: With an Introduction to the Problem of Three Bodies,", Cambridge University Press, (1959).

[1]

Nicola Soave, Susanna Terracini. Addendum to: Symbolic dynamics for the $N$-centre problem at negative energies. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3825-3829. doi: 10.3934/dcds.2013.33.3825

[2]

Sergey V. Bolotin, Piero Negrini. Global regularization for the $n$-center problem on a manifold. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 873-892. doi: 10.3934/dcds.2002.8.873

[3]

Samuel R. Kaplan, Ernesto A. Lacomba, Jaume Llibre. Symbolic dynamics of the elliptic rectilinear restricted 3--body problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 541-555. doi: 10.3934/dcdss.2008.1.541

[4]

Steven T. Piantadosi. Symbolic dynamics on free groups. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 725-738. doi: 10.3934/dcds.2008.20.725

[5]

Giancarlo Benettin, Anna Maria Cherubini, Francesco Fassò. Regular and chaotic motions of the fast rotating rigid body: a numerical study. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 521-540. doi: 10.3934/dcdsb.2002.2.521

[6]

Jim Wiseman. Symbolic dynamics from signed matrices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 621-638. doi: 10.3934/dcds.2004.11.621

[7]

George Osipenko, Stephen Campbell. Applied symbolic dynamics: attractors and filtrations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 43-60. doi: 10.3934/dcds.1999.5.43

[8]

Michael Hochman. A note on universality in multidimensional symbolic dynamics. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 301-314. doi: 10.3934/dcdss.2009.2.301

[9]

Günther J. Wirsching. On the problem of positive predecessor density in $3n+1$ dynamics. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 771-787. doi: 10.3934/dcds.2003.9.771

[10]

Cezar Joiţa, William O. Nowell, Pantelimon Stănică. Chaotic dynamics of some rational maps. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 363-375. doi: 10.3934/dcds.2005.12.363

[11]

Proscovia Namayanja. Chaotic dynamics in a transport equation on a network. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3415-3426. doi: 10.3934/dcdsb.2018283

[12]

Ernesto A. Lacomba, Mario Medina. Oscillatory motions in the rectangular four body problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 557-587. doi: 10.3934/dcdss.2008.1.557

[13]

Jose S. Cánovas, Tönu Puu, Manuel Ruiz Marín. Detecting chaos in a duopoly model via symbolic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 269-278. doi: 10.3934/dcdsb.2010.13.269

[14]

Dieter Mayer, Fredrik Strömberg. Symbolic dynamics for the geodesic flow on Hecke surfaces. Journal of Modern Dynamics, 2008, 2 (4) : 581-627. doi: 10.3934/jmd.2008.2.581

[15]

Frédéric Naud. Birkhoff cones, symbolic dynamics and spectrum of transfer operators. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 581-598. doi: 10.3934/dcds.2004.11.581

[16]

Fryderyk Falniowski, Marcin Kulczycki, Dominik Kwietniak, Jian Li. Two results on entropy, chaos and independence in symbolic dynamics. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3487-3505. doi: 10.3934/dcdsb.2015.20.3487

[17]

David Ralston. Heaviness in symbolic dynamics: Substitution and Sturmian systems. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 287-300. doi: 10.3934/dcdss.2009.2.287

[18]

D.J. Georgiev, A. J. Roberts, D. V. Strunin. Nonlinear dynamics on centre manifolds describing turbulent floods: k-$\omega$ model. Conference Publications, 2007, 2007 (Special) : 419-428. doi: 10.3934/proc.2007.2007.419

[19]

Carlota Rebelo, Alexandre Simões. Periodic linear motions with multiple collisions in a forced Kepler type problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3955-3975. doi: 10.3934/dcds.2018172

[20]

Bernard Ducomet, Alexander Zlotnik. On a regularization of the magnetic gas dynamics system of equations. Kinetic & Related Models, 2013, 6 (3) : 533-543. doi: 10.3934/krm.2013.6.533

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]