- Previous Article
- DCDS Home
- This Issue
-
Next Article
Symbolic dynamics for the $N$-centre problem at negative energies
Traveling waves of diffusive predator-prey systems: Disease outbreak propagation
1. | Mprime Centre for Disease Modelling, York Institute for Health Research, Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, Toronto, M3J 1P3, Canada, Canada |
2. | Division of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85069-7100, United States |
References:
[1] |
Phys. Rev. E, 66 (2002), 011912, 5 pp. Google Scholar |
[2] |
Bull. Math. Biol., 65 (2003), 519-534.
doi: 10.1016/S0092-8240(03)00013-2. |
[3] |
Int. J. Math. Math. Sci., 23 (2000), 425-429.
doi: 10.1155/S0161171200002696. |
[4] |
Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 663-675.
doi: 10.1017/S0308210500004054. |
[5] |
Math. Proc. Camb. Phil. Soc., 80 (1976), 315-330.
doi: 10.1017/S0305004100052944. |
[6] |
J. Roy. Stat. Soc. A, 120 (1957), 48-70.
doi: 10.2307/2342553. |
[7] |
J. Math. Biol., 28 (1990), 529-565.
doi: 10.1007/BF00164162. |
[8] |
Texts in Applied Mathematics, 40, Springer-Verlag, New York, 2001. |
[9] |
Math. Proc. Camb. Phil. Soc., 81 (1977), 431-433.
doi: 10.1017/S0305004100053494. |
[10] |
in "Nonlinear Phenomena in Mathematical Sciences" (ed. V. Lakshmikantham), Academic Press, New York, 1981. Google Scholar |
[11] |
Am. Nat., 160 (2002), 348-359.
doi: 10.1086/341518. |
[12] |
Proc. Amer. Math. Soc., 132 (2004), 2433-2439.
doi: 10.1090/S0002-9939-04-07432-5. |
[13] |
J. Math. Biol., 6 (1978), 109-130.
doi: 10.1007/BF02450783. |
[14] |
Nonlinear Analysis, 2 (1978), 721-737.
doi: 10.1016/0362-546X(78)90015-9. |
[15] |
Annales de la Faculté des Sciences de Toulouse Sér. 6, 10 (2001), 271-292. |
[16] |
Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 251-273.
doi: 10.3934/dcdsb.2007.7.251. |
[17] |
Proc. R. Soc. Edin. Sect. A, 139 (2009), 459-482.
doi: 10.1017/S0308210507000455. |
[18] |
J. Math. Biol., 17 (1983), 11-32.
doi: 10.1007/BF00276112. |
[19] |
Trans. Amer. Math. Soc., 286 (1984), 557-594. |
[20] |
J. Appl. Probab., 17 (1980), 839-845.
doi: 10.2307/3212977. |
[21] |
Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 3043-3058.
doi: 10.3934/dcds.2012.32.3303. |
[22] |
Ann. of Eugenics, 7 (1937), 355-369.
doi: 10.1111/j.1469-1809.1937.tb02153.x. |
[23] |
Math. Biosci., 128 (1995), 131-155.
doi: 10.1016/0025-5564(94)00070-G. |
[24] |
Nonlinear Anal. Real World Appl., 12 (2011), 52-68.
doi: 10.1016/j.nonrwa.2010.05.035. |
[25] |
Nature, 414 (2001), 716-723.
doi: 10.1038/414716a. |
[26] |
Nonlinear World, 1 (1994), 277-290. |
[27] |
Math. Models Methods Appl. Sci., 5 (1995), 935-966.
doi: 10.1142/S0218202595000504. |
[28] |
Acta Mathematicae Applicatae Sinica Engl. Ser., 22 (2006), 243-256.
doi: 10.1007/s10255-006-0300-0. |
[29] |
J. Dynam. Differential Equations, 16 (2004), 745-765. |
[30] |
Nonlinear Anal., 8 (1984), 851-856.
doi: 10.1016/0362-546X(84)90107-X. |
[31] |
J. Theor. Biol., 116 (1985), 377-393.
doi: 10.1016/S0022-5193(85)80276-9. |
[32] |
Proc. R. Soc. Lond. B, 115 (1927), 700-721. Google Scholar |
[33] |
J. Roy. Stat. Soc. A, 120 (1957), 64-67. Google Scholar |
[34] |
in "Mathematics and Computer Science in Biology and Medicine," Medical Research Council, London, (1965), 213-225. Google Scholar |
[35] |
Bull. Math. Biol., 42 (1980), 397-429. |
[36] |
Physica A, 272 (1999), 206-222.
doi: 10.1016/S0378-4371(99)00284-8. |
[37] |
Nonlinearity, 19 (2006), 1253-1273.
doi: 10.1088/0951-7715/19/6/003. |
[38] |
J. Differential Equations, 231 (2006), 57-77. |
[39] |
Comm. Pure Appl. Math., 60 (2007), 1-40; Erratum: 61 (2008), 137-138, MR2361306. |
[40] |
J. Differential Equations, 171 (2001), 294-314. |
[41] |
Math. Biosci., 215 (2008), 64-77.
doi: 10.1016/j.mbs.2008.05.008. |
[42] |
Adv. Appl. Prob., 4 (1972), 233-257.
doi: 10.2307/1425997. |
[43] |
J. Roy. Stat. Soc. B, 39 (1977), 283-326. |
[44] |
Internat. J. Systems Sci., 38 (2007), 699-707.
doi: 10.1080/00207720701596417. |
[45] |
J. Theor. Biol., 156 (1992), 327-348.
doi: 10.1016/S0022-5193(05)80679-4. |
[46] |
Proc. R. Soc. Lond. B, 229 (1986), 111-150.
doi: 10.1098/rspb.1986.0078. |
[47] |
Int. Journal of Math. Analysis, 2 (2008), 1083-1088. |
[48] |
Math. Surveys Monogr., 102, Amer. Math. Soc., Providence, RI, 2003. |
[49] |
J. Appl. Probab., 18 (1981), 715-720.
doi: 10.2307/3213325. |
[50] |
in "Mathematics for Life Science and Medicine" (eds. Y. Iwasa, K. Sato and Y. Takeuchi), Biol. Med. Phys. Biomed. Eng., Springer, Berlin, (2007), 97-122. |
[51] |
in "Spatial Ecology," Chapman & Hall/CRC, Boca Raton, FL, (2009), 293-316. Google Scholar |
[52] |
Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 991-1011.
doi: 10.1017/S0308210500003590. |
[53] |
Math. Med. Biol., 28 (2011), 165-183.
doi: 10.1093/imammb/dqq016. |
[54] |
Mathematical Modelling of Natural Phenomena, 3 (2008), 28-47.
doi: 10.1051/mmnp:2008069. |
[55] |
Nonlinear Anal. Real World Appl., 5 (2004), 895-909.
doi: 10.1016/j.nonrwa.2004.05.001. |
[56] |
Bull. Math. Biol., 67 (2005), 509-528.
doi: 10.1016/j.bulm.2004.08.005. |
[57] |
J. Math. Biol., 8 (1979), 173-187.
doi: 10.1007/BF00279720. |
[58] |
J. Differential Equations, 195 (2003), 430-470. |
[59] |
Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[60] |
J. Differential Equations, 247 (2009), 887-905. |
[61] |
X.-S. Wang, J. Wu and Y. Yang, Richards model revisited: Validation by and application to infection dynamics,, submitted., (). Google Scholar |
[62] |
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466 (2010), 237-261.
doi: 10.1098/rspa.2009.0377. |
[63] |
J. Math. Anal. Appl., 385 (2012), 683-692.
doi: 10.1016/j.jmaa.2011.06.084. |
[64] |
J. Differential Equations, 229 (2006), 270-296. |
[65] |
J. Math. Anal. Appl., 365 (2010), 729-741.
doi: 10.1016/j.jmaa.2009.11.028. |
[66] |
Discrete Contin. Dyn. Syst., 23 (2009), 561-569.
doi: 10.3934/dcds.2009.23.561. |
[67] |
J. Dynamics and Differential Equations, 16 (2004), 679-707. |
[68] |
Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 1043-1056.
doi: 10.3934/dcdsb.2005.5.1043. |
[69] |
PLoS ONE, 6 (2011), e21128.
doi: 10.1371/journal.pone.0021128. |
[70] |
Nonlinear Anal. Real World Appl., 12 (2011), 1223-1234.
doi: 10.1016/j.nonrwa.2010.09.017. |
[71] |
Nonlinearity, 21 (2008), 97-112.
doi: 10.1088/0951-7715/21/1/005. |
[72] |
Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 1117-1128.
doi: 10.3934/dcdsb.2004.4.1117. |
show all references
References:
[1] |
Phys. Rev. E, 66 (2002), 011912, 5 pp. Google Scholar |
[2] |
Bull. Math. Biol., 65 (2003), 519-534.
doi: 10.1016/S0092-8240(03)00013-2. |
[3] |
Int. J. Math. Math. Sci., 23 (2000), 425-429.
doi: 10.1155/S0161171200002696. |
[4] |
Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 663-675.
doi: 10.1017/S0308210500004054. |
[5] |
Math. Proc. Camb. Phil. Soc., 80 (1976), 315-330.
doi: 10.1017/S0305004100052944. |
[6] |
J. Roy. Stat. Soc. A, 120 (1957), 48-70.
doi: 10.2307/2342553. |
[7] |
J. Math. Biol., 28 (1990), 529-565.
doi: 10.1007/BF00164162. |
[8] |
Texts in Applied Mathematics, 40, Springer-Verlag, New York, 2001. |
[9] |
Math. Proc. Camb. Phil. Soc., 81 (1977), 431-433.
doi: 10.1017/S0305004100053494. |
[10] |
in "Nonlinear Phenomena in Mathematical Sciences" (ed. V. Lakshmikantham), Academic Press, New York, 1981. Google Scholar |
[11] |
Am. Nat., 160 (2002), 348-359.
doi: 10.1086/341518. |
[12] |
Proc. Amer. Math. Soc., 132 (2004), 2433-2439.
doi: 10.1090/S0002-9939-04-07432-5. |
[13] |
J. Math. Biol., 6 (1978), 109-130.
doi: 10.1007/BF02450783. |
[14] |
Nonlinear Analysis, 2 (1978), 721-737.
doi: 10.1016/0362-546X(78)90015-9. |
[15] |
Annales de la Faculté des Sciences de Toulouse Sér. 6, 10 (2001), 271-292. |
[16] |
Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 251-273.
doi: 10.3934/dcdsb.2007.7.251. |
[17] |
Proc. R. Soc. Edin. Sect. A, 139 (2009), 459-482.
doi: 10.1017/S0308210507000455. |
[18] |
J. Math. Biol., 17 (1983), 11-32.
doi: 10.1007/BF00276112. |
[19] |
Trans. Amer. Math. Soc., 286 (1984), 557-594. |
[20] |
J. Appl. Probab., 17 (1980), 839-845.
doi: 10.2307/3212977. |
[21] |
Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 3043-3058.
doi: 10.3934/dcds.2012.32.3303. |
[22] |
Ann. of Eugenics, 7 (1937), 355-369.
doi: 10.1111/j.1469-1809.1937.tb02153.x. |
[23] |
Math. Biosci., 128 (1995), 131-155.
doi: 10.1016/0025-5564(94)00070-G. |
[24] |
Nonlinear Anal. Real World Appl., 12 (2011), 52-68.
doi: 10.1016/j.nonrwa.2010.05.035. |
[25] |
Nature, 414 (2001), 716-723.
doi: 10.1038/414716a. |
[26] |
Nonlinear World, 1 (1994), 277-290. |
[27] |
Math. Models Methods Appl. Sci., 5 (1995), 935-966.
doi: 10.1142/S0218202595000504. |
[28] |
Acta Mathematicae Applicatae Sinica Engl. Ser., 22 (2006), 243-256.
doi: 10.1007/s10255-006-0300-0. |
[29] |
J. Dynam. Differential Equations, 16 (2004), 745-765. |
[30] |
Nonlinear Anal., 8 (1984), 851-856.
doi: 10.1016/0362-546X(84)90107-X. |
[31] |
J. Theor. Biol., 116 (1985), 377-393.
doi: 10.1016/S0022-5193(85)80276-9. |
[32] |
Proc. R. Soc. Lond. B, 115 (1927), 700-721. Google Scholar |
[33] |
J. Roy. Stat. Soc. A, 120 (1957), 64-67. Google Scholar |
[34] |
in "Mathematics and Computer Science in Biology and Medicine," Medical Research Council, London, (1965), 213-225. Google Scholar |
[35] |
Bull. Math. Biol., 42 (1980), 397-429. |
[36] |
Physica A, 272 (1999), 206-222.
doi: 10.1016/S0378-4371(99)00284-8. |
[37] |
Nonlinearity, 19 (2006), 1253-1273.
doi: 10.1088/0951-7715/19/6/003. |
[38] |
J. Differential Equations, 231 (2006), 57-77. |
[39] |
Comm. Pure Appl. Math., 60 (2007), 1-40; Erratum: 61 (2008), 137-138, MR2361306. |
[40] |
J. Differential Equations, 171 (2001), 294-314. |
[41] |
Math. Biosci., 215 (2008), 64-77.
doi: 10.1016/j.mbs.2008.05.008. |
[42] |
Adv. Appl. Prob., 4 (1972), 233-257.
doi: 10.2307/1425997. |
[43] |
J. Roy. Stat. Soc. B, 39 (1977), 283-326. |
[44] |
Internat. J. Systems Sci., 38 (2007), 699-707.
doi: 10.1080/00207720701596417. |
[45] |
J. Theor. Biol., 156 (1992), 327-348.
doi: 10.1016/S0022-5193(05)80679-4. |
[46] |
Proc. R. Soc. Lond. B, 229 (1986), 111-150.
doi: 10.1098/rspb.1986.0078. |
[47] |
Int. Journal of Math. Analysis, 2 (2008), 1083-1088. |
[48] |
Math. Surveys Monogr., 102, Amer. Math. Soc., Providence, RI, 2003. |
[49] |
J. Appl. Probab., 18 (1981), 715-720.
doi: 10.2307/3213325. |
[50] |
in "Mathematics for Life Science and Medicine" (eds. Y. Iwasa, K. Sato and Y. Takeuchi), Biol. Med. Phys. Biomed. Eng., Springer, Berlin, (2007), 97-122. |
[51] |
in "Spatial Ecology," Chapman & Hall/CRC, Boca Raton, FL, (2009), 293-316. Google Scholar |
[52] |
Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 991-1011.
doi: 10.1017/S0308210500003590. |
[53] |
Math. Med. Biol., 28 (2011), 165-183.
doi: 10.1093/imammb/dqq016. |
[54] |
Mathematical Modelling of Natural Phenomena, 3 (2008), 28-47.
doi: 10.1051/mmnp:2008069. |
[55] |
Nonlinear Anal. Real World Appl., 5 (2004), 895-909.
doi: 10.1016/j.nonrwa.2004.05.001. |
[56] |
Bull. Math. Biol., 67 (2005), 509-528.
doi: 10.1016/j.bulm.2004.08.005. |
[57] |
J. Math. Biol., 8 (1979), 173-187.
doi: 10.1007/BF00279720. |
[58] |
J. Differential Equations, 195 (2003), 430-470. |
[59] |
Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[60] |
J. Differential Equations, 247 (2009), 887-905. |
[61] |
X.-S. Wang, J. Wu and Y. Yang, Richards model revisited: Validation by and application to infection dynamics,, submitted., (). Google Scholar |
[62] |
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466 (2010), 237-261.
doi: 10.1098/rspa.2009.0377. |
[63] |
J. Math. Anal. Appl., 385 (2012), 683-692.
doi: 10.1016/j.jmaa.2011.06.084. |
[64] |
J. Differential Equations, 229 (2006), 270-296. |
[65] |
J. Math. Anal. Appl., 365 (2010), 729-741.
doi: 10.1016/j.jmaa.2009.11.028. |
[66] |
Discrete Contin. Dyn. Syst., 23 (2009), 561-569.
doi: 10.3934/dcds.2009.23.561. |
[67] |
J. Dynamics and Differential Equations, 16 (2004), 679-707. |
[68] |
Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 1043-1056.
doi: 10.3934/dcdsb.2005.5.1043. |
[69] |
PLoS ONE, 6 (2011), e21128.
doi: 10.1371/journal.pone.0021128. |
[70] |
Nonlinear Anal. Real World Appl., 12 (2011), 1223-1234.
doi: 10.1016/j.nonrwa.2010.09.017. |
[71] |
Nonlinearity, 21 (2008), 97-112.
doi: 10.1088/0951-7715/21/1/005. |
[72] |
Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 1117-1128.
doi: 10.3934/dcdsb.2004.4.1117. |
[1] |
Yan Li, Wan-Tong Li, Guo Lin. Traveling waves of a delayed diffusive SIR epidemic model. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1001-1022. doi: 10.3934/cpaa.2015.14.1001 |
[2] |
Yang Yang, Yun-Rui Yang, Xin-Jun Jiao. Traveling waves for a nonlocal dispersal SIR model equipped delay and generalized incidence. Electronic Research Archive, 2020, 28 (1) : 1-13. doi: 10.3934/era.2020001 |
[3] |
Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692 |
[4] |
Jinling Zhou, Yu Yang. Traveling waves for a nonlocal dispersal SIR model with general nonlinear incidence rate and spatio-temporal delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1719-1741. doi: 10.3934/dcdsb.2017082 |
[5] |
Chufen Wu, Peixuan Weng. Asymptotic speed of propagation and traveling wavefronts for a SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 867-892. doi: 10.3934/dcdsb.2011.15.867 |
[6] |
Wan-Tong Li, Guo Lin, Cong Ma, Fei-Ying Yang. Traveling wave solutions of a nonlocal delayed SIR model without outbreak threshold. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 467-484. doi: 10.3934/dcdsb.2014.19.467 |
[7] |
Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 709-722. doi: 10.3934/dcdss.2020039 |
[8] |
Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775 |
[9] |
Tong Li, Jeungeun Park. Traveling waves in a chemotaxis model with logistic growth. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6465-6480. doi: 10.3934/dcdsb.2019147 |
[10] |
Matthew S. Mizuhara, Peng Zhang. Uniqueness and traveling waves in a cell motility model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2811-2835. doi: 10.3934/dcdsb.2018315 |
[11] |
Thuc Manh Le, Nguyen Van Minh. Monotone traveling waves in a general discrete model for populations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3221-3234. doi: 10.3934/dcdsb.2017171 |
[12] |
Chuncheng Wang, Rongsong Liu, Junping Shi, Carlos Martinez del Rio. Traveling waves of a mutualistic model of mistletoes and birds. Discrete & Continuous Dynamical Systems, 2015, 35 (4) : 1743-1765. doi: 10.3934/dcds.2015.35.1743 |
[13] |
Zhiting Xu. Traveling waves for a diffusive SEIR epidemic model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 871-892. doi: 10.3934/cpaa.2016.15.871 |
[14] |
Judith R. Miller, Huihui Zeng. Multidimensional stability of planar traveling waves for an integrodifference model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 741-751. doi: 10.3934/dcdsb.2013.18.741 |
[15] |
Wen Shen, Karim Shikh-Khalil. Traveling waves for a microscopic model of traffic flow. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2571-2589. doi: 10.3934/dcds.2018108 |
[16] |
Xiao-Biao Lin, Stephen Schecter. Traveling waves and shock waves. Discrete & Continuous Dynamical Systems, 2004, 10 (4) : i-ii. doi: 10.3934/dcds.2004.10.4i |
[17] |
Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297 |
[18] |
Paolo Perfetti. Fixed point theorems in the Arnol'd model about instability of the action-variables in phase-space. Discrete & Continuous Dynamical Systems, 1998, 4 (2) : 379-391. doi: 10.3934/dcds.1998.4.379 |
[19] |
Chunqing Wu, Patricia J.Y. Wong. Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3255-3266. doi: 10.3934/dcdsb.2015.20.3255 |
[20] |
Zhiting Xu. Traveling waves in an SEIR epidemic model with the variable total population. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3723-3742. doi: 10.3934/dcdsb.2016118 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]