Citation: |
[1] |
V. I. Arnol'd, A theorem of Liouville concerning integrable problems of dynamics, Sibirsk. Mat. Ž., 4 (1963), 471-474. |
[2] |
V. I. Arnol'd, S. M. Guseĭn-Zade and A. N. Varchenko, "Singularities of Differentiable Maps. Vol. I. The Classification of Critical Points, Caustics and Wave Fronts," Monographs in Mathematics, 82, Birkhäuser Boston, Inc., Boston, MA, 1985. |
[3] |
M. Atiyah, Convexity and commuting Hamiltonians, Bull. Lond. Math. Soc., 14 (1982), 1-15. |
[4] |
P. Bérard, Transplantation et isospectralité. I, Math. Ann., 292 (1992), 547-559. |
[5] |
A. V. Bolsinov and A. T. Fomenko, "Integrable Hamiltonian Systems. Geometry, Topology, Classification," Translated from the 1999 Russian original, Chapman & Hall/CRC, Boca Raton, FL, 2004. |
[6] |
B. Bramham and H. Hofer, First steps towards a symplectic dynamics, to appear in Surveys in Differential Geometry (SDG), 17, arXiv:1102.3723. |
[7] |
H. Broer, R. Cushman, F. Francesco and F. Takens, Geometry of KAM tori for nearly integrable Hamiltonian systems, Ergodic Theory Dynam. Systems, 27 (2007), 725-741. |
[8] |
J. Brüning and E. Heintze, Spektrale Starrheit gewisser Drehflächen, Math. Ann., 269 (1984), 95-101. |
[9] |
P. Buser, Isospectral Riemann surfaces, Ann. Inst. Fourier (Grenoble), 36 (1986), 167-192. |
[10] |
A.-M. Charbonnel, Comportement semi-classique du spectre conjoint d'opérateurs pseudo-différentiels qui commutent, Asymptotic Analysis, 1 (1988), 227-261. |
[11] |
A.-M. Charbonnel and G. Popov, A semi-classical trace formula for several commuting operators, Comm. Partial Differential Equations, 24 (1999), 283-323. |
[12] |
L. Charles, Quasimodes and Bohr-Sommerfeld conditions for the Toeplitz operators, Comm. Partial Differential Equations, 28 (2003), 1527-1566. |
[13] |
L. Charles, Symbolic calculus for Toeplitz operators with half-forms, Journal of Symplectic Geometry, 4 (2006), 171-198. |
[14] |
L. Charles, Á. Pelayo and S. Vũ Ngọc, Isospectrality for quantum toric integrable systems, preprint, arXiv:1111.5985. |
[15] |
L. Charles, Á. Pelayo and S. Vũ Ngọc, The inverse spectral conjecture for semitoric systems, preprint. |
[16] |
M. S. Child, T. Weston and J. Tennyson, Quantum monodromy in the spectrum of H2O and other systems: New insight into the level structure of quasi-linear molecules, Mol. Phys., 96 (1999), 371-379. |
[17] |
Y. Colin de Verdière, Spectre conjoint d'opérateurs pseudo-différentiels qui commutent. I. Le cas non intégrable, Duke Math. J., 46 (1979), 169-182. |
[18] |
Y. Colin de Verdière, Spectre conjoint d'opérateurs pseudo-différentiels qui commutent, II. Le cas intégrable, Math. Z., 171 (1980), 51-73. |
[19] |
T. Delzant, Hamiltoniens périodiques et image convexe de l'application moment, Bull. Soc. Math. France, 116 (1988), 315-339. |
[20] |
J. J. Duistermaat, Oscillatory integrals, Lagrange immersions and unfoldings of singularities, Comm. Pure Appl. Math., 27 (1974), 207-281. |
[21] |
J. J. Duistermaat and Á. Pelayo, Reduced phase space and toric variety coordinatizations of Delzant spaces, Math. Proc. Cambr. Phil. Soc., 146 (2009), 695-718. |
[22] |
A. Einstein, Zum Quantensatz von Sommerfeld und Epstein, Deutsche Physikalische Gesellschaft. Verhandlungen, 19 (1917), 82-92. |
[23] |
Y. Eliashberg and L. Polterovich, Symplectic quasi-states on the quadric surface and Lagrangian submanifolds, arXiv:1006.2501. |
[24] |
L. H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting integrals--elliptic case, Comment. Math. Helv., 65 (1990), 4-35. |
[25] |
N. J. Fitch, C. A. Weidner, L. P. Parazzoli, H. R. Dullin and H. J. Lewandowski, Experimental demonstration of classical Hamiltonian monodromy in the 1 : 1 : 2 resonant elastic pendulum, Phys. Rev. Lett., (2009), 034301. |
[26] |
M. Garay, A rigidity theorem for Lagrangian deformations, Compos. Math., 141 (2005), 1602-1614. |
[27] |
M. Garay, Stable moment mappings and singular Lagrangian fibrations, Q. J. Math., 56 (2005), 357-366. |
[28] |
C. Gordon, D. Webb and S. Wolpert, Isospectral plane domains and surfaces via Riemannian orbifolds, Invent. Math., 110 (1992), 1-22. |
[29] |
M. Gross, Topological mirror symmetry, Invent. Math., 144 (2001), 75-137. |
[30] |
M. Gross and B. Siebert, Mirror symmetry via logarithmic degeneration data. I, J. Diff. Geom., 72 (2006), 169-338. |
[31] |
V. Guillemin and S. Sternberg, Convexity properties of the moment mapping, Invent. Math., 67 (1982), 491-513. |
[32] |
V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations, Invent. Math., 67 (1982), 515-538. |
[33] |
N. Hitchin, Stable bundles and integrable systems, Duke Math. J., 54 (1987), 91-114. |
[34] |
M. Hitrik and J. Sjöstrand and S. Vũ Ngọc, Diophantine tori and spectral asymptotics for nonselfadjoint operators, Amer. J. Math., 129 (2007), 105-182. |
[35] |
M. Kac, Can one hear the shape of a drum?, (Polish) Translated from the English (Amer. Math. Monthly, 73 (1966), part II, 1-23), Wiadom. Mat. (2), 13 (1971), 11-35. |
[36] |
A. Katok, Open problems in elliptic dynamics, http://www.math.psu.edu/katok_a/elliptic.pdf |
[37] |
F. Kirwan, Convexity properties of the moment mapping. III, Invent. Math., 77 (1984), 547-552. |
[38] |
M. Kontsevich and Y. Soibelman, Affine structures and non-Archimedean analytic spaces, in "The Unity of Mathematics," Progr. Math., 244, Birkhäuser Boston, (2006), 321-385. |
[39] |
S. Kowalevski, Sur le probleme de la rotation d'un corps solide autour d'un point fixe, Acta Math., 12 (1889), 177-232. |
[40] |
P. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math., 21 (1968), 467-490. |
[41] |
Y. Le Floch, Singular Bohr-Sommerfeld conditions in dimension 1: The elliptic case, preprint, 2012. |
[42] |
N. C. Leung and M. Symington, Almost toric symplectic four-manifolds, J. Symplectic Geom., 8 (2010), 143-187. |
[43] |
A. Melin and J. Sjöstrand, Bohr-Sommerfeld quantization condition for non-selfadjoint operators in dimension 2. Autour de l'analyse microlocale, Astérisque, 284 (2003), 181-244. |
[44] |
J. Milnor, Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat. Acad. Sci. U.S.A., 51 (1964), 542. |
[45] |
B. Osgood, R. Phillips and P. Sarnak, Moduli space, heights and isospectral sets of plane domains, Ann. of Math. (2), 129 (1989), 293-362. |
[46] |
Á. Pelayo, T. S. Ratiu and S. Vũ Ngọc, Symplectic bifurcation theory for integrable systems, arXiv:1108.0328. |
[47] |
Á. Pelayo, V. Voevodsky and M. Warren, Basic $p$-adic analysis in the univalent foundations, in preparation. |
[48] |
Á. Pelayo and S. Vũ Ngọc, Semitoric integrable systems on symplectic $4$-manifolds, Invent. Math., 177 (2009), 571-597. |
[49] |
Á. Pelayo and S. Vũ Ngọc, Constructing integrable systems of semitoric type, Acta Math., 206 (2011), 93-125. |
[50] |
Á. Pelayo and S. Vũ Ngọc, Symplectic theory of completely integrable Hamiltonian systems, Bull. Amer. Math. Soc. (N.S.), 48 (2011), 409-455. |
[51] |
Á. Pelayo and S. Vũ Ngọc, Hamiltonian dynamics and spectral theory for spin-oscillators, Comm. Math Phys., 309 (2012), 123-154. |
[52] |
N. Reshetikhin, Lectures on the integrability of the six-vertex model, in "Exact Methods in Low-Dimensional Statistical Physics and Quantum Computing," Oxford Univ. Press, Oxford, (2010), 197-266. |
[53] |
D. A. Sadovskií and B. Zhilinskií, Counting levels within vibrational polyads, J. Chem. Phys., 103 (1995), 10520, 17 pp. |
[54] |
C. Sevenheck and D. van Straten, Rigid and complete intersection Lagrangian singularities, Manuscripta Math., 114 (2004), 197-209. |
[55] |
C. Sevenheck and D. van Straten, Deformation of singular Lagrangian subvarieties, Math. Ann., 327 (2003), 79-102. |
[56] |
M. Symington, Four dimensions from two in symplectic topology, in "Topology and Geometry of Manifolds" (Athens, GA, 2001), Proc. Symp. Pure Math., 71, Amer. Math. Soc., Providence, RI, (2003), 153-208. |
[57] |
J. Toth and S. Zelditch, $L^p$ norms of eigenfunctions in the completely integrable case, Ann. Henri Poincaré, 4 (2003), 343-368. |
[58] |
V. Voevodsky, Univalent Foundations Project. Avaiable from: http://www.math.ias.edu/~vladimir/.../univalent_foundations_project.pdf. |
[59] |
S. Vũ Ngọc, Bohr-Sommerfeld conditions for integrable systems with critical manifolds of focus-focus type, Comm. Pure Appl. Math., 53 (2000), 143-217. |
[60] |
S. Vũ Ngọc, Symplectic inverse spectral theory for pseudodifferential operators, in "Geometric Aspects of Analysis and Mechanics," Progress in Mathematics, 292, Birkhäuser/Springer, New York, (2011), 353-372. |
[61] |
S. Vũ Ngọc, Moment polytopes for symplectic manifolds with monodromy, Adv. Math., 208 (2007), 909-934. |
[62] |
C. Wacheux, "About the Image of Semi-Toric Moment Map," Ph.D thesis, University of Rennes 1, in progress. |
[63] |
S. Zelditch, Inverse spectral problem for analytic domains. II. $\mathbbZ_2$-symmetric domains, Ann. of Math. (2), 170 (2009), 205-269. |
[64] |
N. T. Zung, Convergence versus integrability in Birkhoff normal form, Ann. of Math., 161 (2005), 141-156. |
[65] |
N. T. Zung, Kolmogorov condition near hyperbolic singularities of integrable Hamiltonian systems, Regul. Chaotic Dyn., 12 (2007), 680-688. |