October  2012, 32(10): 3379-3397. doi: 10.3934/dcds.2012.32.3379

Regularity of $\infty$ for elliptic equations with measurable coefficients and its consequences

1. 

Department of Mathematics, Florida Institute of Technology, Melbourne, Florida 32901, United States

Received  January 2011 Revised  March 2012 Published  May 2012

This paper introduces a notion of regularity (or irregularity) of the point at infinity ($\infty$) for the unbounded open set $\Omega\subset {\mathbb R}^{N}$ concerning second order uniformly elliptic equations with bounded and measurable coefficients, according as whether the ${\mathcal A}$- harmonic measure of $\infty$ is zero (or positive). A necessary and sufficient condition for the existence of a unique bounded solution to the Dirichlet problem in an arbitrary open set of ${\mathbb R}^{N}, N\ge 3$ is established in terms of the Wiener test for the regularity of $\infty$. It coincides with the Wiener test for the regularity of $\infty$ in the case of Laplace equation. From the topological point of view, the Wiener test at $\infty$ presents thinness criteria of sets near $\infty$ in fine topology. Precisely, the open set is a deleted neigborhood of $\infty$ in fine topology if and only if $\infty$ is irregular.
Citation: Ugur G. Abdulla. Regularity of $\infty$ for elliptic equations with measurable coefficients and its consequences. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3379-3397. doi: 10.3934/dcds.2012.32.3379
References:
[1]

U. G. Abdulla, Wiener's criterion for the unique solvability of the Dirichlet problem in arbitrary open sets with non-compact boundaries,, Nonlinear Analysis, 67 (2007), 563.  doi: 10.1016/j.na.2006.06.004.  Google Scholar

[2]

U. G. Abdulla, Wiener's criterion at $\infty$ for the heat equation,, Advances in Differential Equations, 13 (2008), 457.   Google Scholar

[3]

U. G. Abdulla, Wiener's criterion at $\infty$ for the heat equation and its measure-theoretical counterpart,, Electronic Research Announcements in Mathematical Sciences, 15 (2008), 44.   Google Scholar

[4]

R. A. Adams, "Sobolev Spaces,", Pure and Applied Mathematics, (1975).   Google Scholar

[5]

M. Brelot, "On Topologies and Boundaries in Potential Theory,", Enlarged edition of a course of lectures delivered in 1966, 175 (1966).   Google Scholar

[6]

E. De Giorgi, Sulla differentiabilitá e l'analiticitá delle estremali degli integrali multipli regolari,, Mem. Accad. Sci. Torino, 3 (1957), 25.   Google Scholar

[7]

J. L. Doob, "Classical Potential Theory and its Probabilistic Counterpart,", Grundlehren der Mathematischen Wissenschaften, 262 (1984).   Google Scholar

[8]

E. B. Dynkin, "Markov Processes,", Springer-Verlag, (1965).   Google Scholar

[9]

J. Heinonen, T. Kilpeläinen and O. Martio, "Nonlinear Potential Theory of Degenerate Elliptic Equations,", Oxford Mathematical Monographs, (1993).   Google Scholar

[10]

E. Fabes, D. Jerison and C. Kenig, The Wiener test for degenerate elliptic equations,, Annales de l'Institut Fourier (Grenoble), 32 (1982), 151.  doi: 10.5802/aif.883.  Google Scholar

[11]

R. Gariepy and W. P. Ziemer, A regularity condition at the boundary for solutions of quasilinear elliptic equations,, Arch. for Rational Mech. Anal., 67 (1977), 25.  doi: 10.1007/BF00280825.  Google Scholar

[12]

K. Itô and H. P. McKean, Jr., Potential and random walk,, Illinois J. Math., 4 (1960), 119.   Google Scholar

[13]

K. Ito and H. P. McKean, Jr., "Diffusion Processes and Their Sample Paths,", Springer, (1996).   Google Scholar

[14]

T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Mathematica, 172 (1994), 137.  doi: 10.1007/BF02392793.  Google Scholar

[15]

N. S. Landkof, "Foundations of Modern Potential Theory,", Die Grundlehren der mathematischen Wissenschaften, (1972).   Google Scholar

[16]

P. Lindqvist and O. Martio, Two theorems of N. Wiener for solutions of quasilinear elliptic equations,, Acta Mathematica, 155 (1985), 153.  doi: 10.1007/BF02392541.  Google Scholar

[17]

W. Littman, G. Stampacchia and H. F. Weinberger, Regular points for elliptic equations with discontinuous coefficients,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (3), 17 (1963), 43.   Google Scholar

[18]

J. Malý and W. P. Ziemer, "Fine Regularity of Solutions of Elliptic Partial Differential Equations,", Mathematical Surveys and Monographs, 51 (1997).   Google Scholar

[19]

V. G. Maz'ya, On the continuity at a boundary point of solutions of quasi-linear elliptic equations,, Vestnik Leningrad University: Mathematics, 3 (1976), 225.   Google Scholar

[20]

J. Moser, On Harnack's theorem for elliptic differential equations,, Comm. Pure Appl. Math., 14 (1961), 577.  doi: 10.1002/cpa.3160140329.  Google Scholar

[21]

J. Nash, Continuity of solutions of parabolic and elliptic equations,, Amer. J. Math., 80 (1958), 931.  doi: 10.2307/2372841.  Google Scholar

[22]

J. Serrin and H. F. Weinberger, Isolated singularities of solutions of linear elliptic equations,, Amer. J. Math., 88 (1966), 258.  doi: 10.2307/2373060.  Google Scholar

[23]

N. Wiener, Certain notions in potential theory,, J. Math. Phys., 3 (1924), 24.   Google Scholar

[24]

N. Wiener, The dirichlet problem,, J. Math. Phys., 3 (1924), 127.   Google Scholar

show all references

References:
[1]

U. G. Abdulla, Wiener's criterion for the unique solvability of the Dirichlet problem in arbitrary open sets with non-compact boundaries,, Nonlinear Analysis, 67 (2007), 563.  doi: 10.1016/j.na.2006.06.004.  Google Scholar

[2]

U. G. Abdulla, Wiener's criterion at $\infty$ for the heat equation,, Advances in Differential Equations, 13 (2008), 457.   Google Scholar

[3]

U. G. Abdulla, Wiener's criterion at $\infty$ for the heat equation and its measure-theoretical counterpart,, Electronic Research Announcements in Mathematical Sciences, 15 (2008), 44.   Google Scholar

[4]

R. A. Adams, "Sobolev Spaces,", Pure and Applied Mathematics, (1975).   Google Scholar

[5]

M. Brelot, "On Topologies and Boundaries in Potential Theory,", Enlarged edition of a course of lectures delivered in 1966, 175 (1966).   Google Scholar

[6]

E. De Giorgi, Sulla differentiabilitá e l'analiticitá delle estremali degli integrali multipli regolari,, Mem. Accad. Sci. Torino, 3 (1957), 25.   Google Scholar

[7]

J. L. Doob, "Classical Potential Theory and its Probabilistic Counterpart,", Grundlehren der Mathematischen Wissenschaften, 262 (1984).   Google Scholar

[8]

E. B. Dynkin, "Markov Processes,", Springer-Verlag, (1965).   Google Scholar

[9]

J. Heinonen, T. Kilpeläinen and O. Martio, "Nonlinear Potential Theory of Degenerate Elliptic Equations,", Oxford Mathematical Monographs, (1993).   Google Scholar

[10]

E. Fabes, D. Jerison and C. Kenig, The Wiener test for degenerate elliptic equations,, Annales de l'Institut Fourier (Grenoble), 32 (1982), 151.  doi: 10.5802/aif.883.  Google Scholar

[11]

R. Gariepy and W. P. Ziemer, A regularity condition at the boundary for solutions of quasilinear elliptic equations,, Arch. for Rational Mech. Anal., 67 (1977), 25.  doi: 10.1007/BF00280825.  Google Scholar

[12]

K. Itô and H. P. McKean, Jr., Potential and random walk,, Illinois J. Math., 4 (1960), 119.   Google Scholar

[13]

K. Ito and H. P. McKean, Jr., "Diffusion Processes and Their Sample Paths,", Springer, (1996).   Google Scholar

[14]

T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Mathematica, 172 (1994), 137.  doi: 10.1007/BF02392793.  Google Scholar

[15]

N. S. Landkof, "Foundations of Modern Potential Theory,", Die Grundlehren der mathematischen Wissenschaften, (1972).   Google Scholar

[16]

P. Lindqvist and O. Martio, Two theorems of N. Wiener for solutions of quasilinear elliptic equations,, Acta Mathematica, 155 (1985), 153.  doi: 10.1007/BF02392541.  Google Scholar

[17]

W. Littman, G. Stampacchia and H. F. Weinberger, Regular points for elliptic equations with discontinuous coefficients,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (3), 17 (1963), 43.   Google Scholar

[18]

J. Malý and W. P. Ziemer, "Fine Regularity of Solutions of Elliptic Partial Differential Equations,", Mathematical Surveys and Monographs, 51 (1997).   Google Scholar

[19]

V. G. Maz'ya, On the continuity at a boundary point of solutions of quasi-linear elliptic equations,, Vestnik Leningrad University: Mathematics, 3 (1976), 225.   Google Scholar

[20]

J. Moser, On Harnack's theorem for elliptic differential equations,, Comm. Pure Appl. Math., 14 (1961), 577.  doi: 10.1002/cpa.3160140329.  Google Scholar

[21]

J. Nash, Continuity of solutions of parabolic and elliptic equations,, Amer. J. Math., 80 (1958), 931.  doi: 10.2307/2372841.  Google Scholar

[22]

J. Serrin and H. F. Weinberger, Isolated singularities of solutions of linear elliptic equations,, Amer. J. Math., 88 (1966), 258.  doi: 10.2307/2373060.  Google Scholar

[23]

N. Wiener, Certain notions in potential theory,, J. Math. Phys., 3 (1924), 24.   Google Scholar

[24]

N. Wiener, The dirichlet problem,, J. Math. Phys., 3 (1924), 127.   Google Scholar

[1]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[2]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021014

[3]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[4]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[5]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[6]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[7]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[8]

Chaman Kumar. On Milstein-type scheme for SDE driven by Lévy noise with super-linear coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1405-1446. doi: 10.3934/dcdsb.2020167

[9]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[10]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[11]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[12]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[13]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[14]

Sujit Kumar Samanta, Rakesh Nandi. Analysis of $GI^{[X]}/D$-$MSP/1/\infty$ queue using $RG$-factorization. Journal of Industrial & Management Optimization, 2021, 17 (2) : 549-573. doi: 10.3934/jimo.2019123

[15]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[16]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[17]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228

[18]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[19]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[20]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]