October  2012, 32(10): 3399-3419. doi: 10.3934/dcds.2012.32.3399

Computation of rotation numbers for a class of PL-circle homeomorphisms

1. 

University of Carthage, Faculty of Science of Bizerte, Department of Mathematics, Zarzouna, 7021, Tunisia, Tunisia

Received  May 2011 Revised  February 2012 Published  May 2012

We give an explicite formula to compute rotation numbers of piecewise linear (PL) circle homeomorphisms $f$ with the product of $f$-jumps in the break points contained in a same orbit is trivial. In particular, a simple formulas are then given for particular PL-homeomorphisms such as the PL-Herman's examples. We also deduce that if the slopes of $f$ are integral powers of an integer $m\geq 2$ and break points and their images under $f$ are $m$-adic rational numbers, then the rotation number of $f$ is rational.
Citation: Abdelhamid Adouani, Habib Marzougui. Computation of rotation numbers for a class of PL-circle homeomorphisms. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3399-3419. doi: 10.3934/dcds.2012.32.3399
References:
[1]

A. Adouani and H. Marzougui, Sur les Homéomorphismes du cercle de classe $P$ $C^r$ par morceaux ($r\geq 1$) qui sont conjugués $C^r$ par morceaux aux rotations irrationnelles,, Ann. Inst. Fourier (Grenoble), 58 (2008), 755.  doi: 10.5802/aif.2368.  Google Scholar

[2]

A. Adouani and H. Marzougui, On piecewise smoothness of conjugacy of class P circle homeomorphisms to diffeomorphisms and rotations,, Dynamical Systems, (2012).   Google Scholar

[3]

M. D. Boshernitzan, Dense orbits of rationals,, Proc. Amer. Math. Soc., 117 (1993), 1201.  doi: 10.1090/S0002-9939-1993-1134622-6.  Google Scholar

[4]

A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore,, J. Math. Pures Appl., 11 (1932), 333.   Google Scholar

[5]

Z. Coelho, A. Lopez and L. F. da Rocha, Absolutely continuous invariant measures for a class of affine interval exchange maps,, Proc. Amer. Math. Soc., 123 (1995), 3533.  doi: 10.1090/S0002-9939-1995-1322918-6.  Google Scholar

[6]

M.-R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations,, Inst. Hautes Études Sci. Publ. Math., 49 (1979), 5.  doi: 10.1007/BF02684798.  Google Scholar

[7]

I. Liousse, PL Homeomorphisms of the circle which are piecewise $C^1$ conjugate to irrational rotations,, Bull. Braz. Math. Soc. (N.S.), 35 (2004), 269.  doi: 10.1007/s00574-004-0014-y.  Google Scholar

[8]

I. Liousse, Rotation numbers in Thompson-Stein groups and applications,, Geom. Dedicata, 131 (2008), 49.  doi: 10.1007/s10711-007-9216-y.  Google Scholar

[9]

I. Liousse, Nombre de rotation dans les groupes de Thompson généralisés, automorphismes,, preprint, (2006).   Google Scholar

[10]

H. Poincaré, Oeuvres complètes,, \textbf{t.1} (1885), t.1 (1885), 137.   Google Scholar

show all references

References:
[1]

A. Adouani and H. Marzougui, Sur les Homéomorphismes du cercle de classe $P$ $C^r$ par morceaux ($r\geq 1$) qui sont conjugués $C^r$ par morceaux aux rotations irrationnelles,, Ann. Inst. Fourier (Grenoble), 58 (2008), 755.  doi: 10.5802/aif.2368.  Google Scholar

[2]

A. Adouani and H. Marzougui, On piecewise smoothness of conjugacy of class P circle homeomorphisms to diffeomorphisms and rotations,, Dynamical Systems, (2012).   Google Scholar

[3]

M. D. Boshernitzan, Dense orbits of rationals,, Proc. Amer. Math. Soc., 117 (1993), 1201.  doi: 10.1090/S0002-9939-1993-1134622-6.  Google Scholar

[4]

A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore,, J. Math. Pures Appl., 11 (1932), 333.   Google Scholar

[5]

Z. Coelho, A. Lopez and L. F. da Rocha, Absolutely continuous invariant measures for a class of affine interval exchange maps,, Proc. Amer. Math. Soc., 123 (1995), 3533.  doi: 10.1090/S0002-9939-1995-1322918-6.  Google Scholar

[6]

M.-R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations,, Inst. Hautes Études Sci. Publ. Math., 49 (1979), 5.  doi: 10.1007/BF02684798.  Google Scholar

[7]

I. Liousse, PL Homeomorphisms of the circle which are piecewise $C^1$ conjugate to irrational rotations,, Bull. Braz. Math. Soc. (N.S.), 35 (2004), 269.  doi: 10.1007/s00574-004-0014-y.  Google Scholar

[8]

I. Liousse, Rotation numbers in Thompson-Stein groups and applications,, Geom. Dedicata, 131 (2008), 49.  doi: 10.1007/s10711-007-9216-y.  Google Scholar

[9]

I. Liousse, Nombre de rotation dans les groupes de Thompson généralisés, automorphismes,, preprint, (2006).   Google Scholar

[10]

H. Poincaré, Oeuvres complètes,, \textbf{t.1} (1885), t.1 (1885), 137.   Google Scholar

[1]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[2]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[3]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[4]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[5]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[6]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[7]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[8]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[9]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[10]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[11]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[12]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[13]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[14]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[15]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[16]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[17]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[18]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[19]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[20]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]