October  2012, 32(10): 3399-3419. doi: 10.3934/dcds.2012.32.3399

Computation of rotation numbers for a class of PL-circle homeomorphisms

1. 

University of Carthage, Faculty of Science of Bizerte, Department of Mathematics, Zarzouna, 7021, Tunisia, Tunisia

Received  May 2011 Revised  February 2012 Published  May 2012

We give an explicite formula to compute rotation numbers of piecewise linear (PL) circle homeomorphisms $f$ with the product of $f$-jumps in the break points contained in a same orbit is trivial. In particular, a simple formulas are then given for particular PL-homeomorphisms such as the PL-Herman's examples. We also deduce that if the slopes of $f$ are integral powers of an integer $m\geq 2$ and break points and their images under $f$ are $m$-adic rational numbers, then the rotation number of $f$ is rational.
Citation: Abdelhamid Adouani, Habib Marzougui. Computation of rotation numbers for a class of PL-circle homeomorphisms. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3399-3419. doi: 10.3934/dcds.2012.32.3399
References:
[1]

A. Adouani and H. Marzougui, Sur les Homéomorphismes du cercle de classe $P$ $C^r$ par morceaux ($r\geq 1$) qui sont conjugués $C^r$ par morceaux aux rotations irrationnelles, Ann. Inst. Fourier (Grenoble), 58 (2008), 755-775. doi: 10.5802/aif.2368.

[2]

A. Adouani and H. Marzougui, On piecewise smoothness of conjugacy of class P circle homeomorphisms to diffeomorphisms and rotations, Dynamical Systems, to appear, 2012.

[3]

M. D. Boshernitzan, Dense orbits of rationals, Proc. Amer. Math. Soc., 117 (1993), 1201-1203. doi: 10.1090/S0002-9939-1993-1134622-6.

[4]

A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl., 11 (1932), 333-375.

[5]

Z. Coelho, A. Lopez and L. F. da Rocha, Absolutely continuous invariant measures for a class of affine interval exchange maps, Proc. Amer. Math. Soc., 123 (1995), 3533-3542. doi: 10.1090/S0002-9939-1995-1322918-6.

[6]

M.-R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math., 49 (1979), 5-233. doi: 10.1007/BF02684798.

[7]

I. Liousse, PL Homeomorphisms of the circle which are piecewise $C^1$ conjugate to irrational rotations, Bull. Braz. Math. Soc. (N.S.), 35 (2004), 269-280. doi: 10.1007/s00574-004-0014-y.

[8]

I. Liousse, Rotation numbers in Thompson-Stein groups and applications, Geom. Dedicata, 131 (2008), 49-71. doi: 10.1007/s10711-007-9216-y.

[9]

I. Liousse, Nombre de rotation dans les groupes de Thompson généralisés, automorphismes, preprint, 2006. Available from: http://hal.ccsd.cnrs.fr/ccsd-00004554.

[10]

H. Poincaré, Oeuvres complètes, t.1 (1885), 137-158.

show all references

References:
[1]

A. Adouani and H. Marzougui, Sur les Homéomorphismes du cercle de classe $P$ $C^r$ par morceaux ($r\geq 1$) qui sont conjugués $C^r$ par morceaux aux rotations irrationnelles, Ann. Inst. Fourier (Grenoble), 58 (2008), 755-775. doi: 10.5802/aif.2368.

[2]

A. Adouani and H. Marzougui, On piecewise smoothness of conjugacy of class P circle homeomorphisms to diffeomorphisms and rotations, Dynamical Systems, to appear, 2012.

[3]

M. D. Boshernitzan, Dense orbits of rationals, Proc. Amer. Math. Soc., 117 (1993), 1201-1203. doi: 10.1090/S0002-9939-1993-1134622-6.

[4]

A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl., 11 (1932), 333-375.

[5]

Z. Coelho, A. Lopez and L. F. da Rocha, Absolutely continuous invariant measures for a class of affine interval exchange maps, Proc. Amer. Math. Soc., 123 (1995), 3533-3542. doi: 10.1090/S0002-9939-1995-1322918-6.

[6]

M.-R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math., 49 (1979), 5-233. doi: 10.1007/BF02684798.

[7]

I. Liousse, PL Homeomorphisms of the circle which are piecewise $C^1$ conjugate to irrational rotations, Bull. Braz. Math. Soc. (N.S.), 35 (2004), 269-280. doi: 10.1007/s00574-004-0014-y.

[8]

I. Liousse, Rotation numbers in Thompson-Stein groups and applications, Geom. Dedicata, 131 (2008), 49-71. doi: 10.1007/s10711-007-9216-y.

[9]

I. Liousse, Nombre de rotation dans les groupes de Thompson généralisés, automorphismes, preprint, 2006. Available from: http://hal.ccsd.cnrs.fr/ccsd-00004554.

[10]

H. Poincaré, Oeuvres complètes, t.1 (1885), 137-158.

[1]

Abdumajid Begmatov, Akhtam Dzhalilov, Dieter Mayer. Renormalizations of circle hoemomorphisms with a single break point. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4487-4513. doi: 10.3934/dcds.2014.34.4487

[2]

Akhtam Dzhalilov, Isabelle Liousse, Dieter Mayer. Singular measures of piecewise smooth circle homeomorphisms with two break points. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 381-403. doi: 10.3934/dcds.2009.24.381

[3]

Jan J. Dijkstra and Jan van Mill. Homeomorphism groups of manifolds and Erdos space. Electronic Research Announcements, 2004, 10: 29-38.

[4]

Yves Cornulier. Realizations of groups of piecewise continuous transformations of the circle. Journal of Modern Dynamics, 2020, 16: 59-80. doi: 10.3934/jmd.2020003

[5]

A. A. Pinto, D. Sullivan. The circle and the solenoid. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 463-504. doi: 10.3934/dcds.2006.16.463

[6]

Malo Jézéquel. Parameter regularity of dynamical determinants of expanding maps of the circle and an application to linear response. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 927-958. doi: 10.3934/dcds.2019039

[7]

Stefano Galatolo, Alfonso Sorrentino. Quantitative statistical stability and linear response for irrational rotations and diffeomorphisms of the circle. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 815-839. doi: 10.3934/dcds.2021138

[8]

M . Bartušek, John R. Graef. Some limit-point/limit-circle results for third order differential equations. Conference Publications, 2001, 2001 (Special) : 31-38. doi: 10.3934/proc.2001.2001.31

[9]

Wenxian Shen. Global attractor and rotation number of a class of nonlinear noisy oscillators. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 597-611. doi: 10.3934/dcds.2007.18.597

[10]

Jimmy Tseng. On circle rotations and the shrinking target properties. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1111-1122. doi: 10.3934/dcds.2008.20.1111

[11]

Hicham Zmarrou, Ale Jan Homburg. Dynamics and bifurcations of random circle diffeomorphism. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 719-731. doi: 10.3934/dcdsb.2008.10.719

[12]

Heather Hannah, A. Alexandrou Himonas, Gerson Petronilho. Anisotropic Gevrey regularity for mKdV on the circle. Conference Publications, 2011, 2011 (Special) : 634-642. doi: 10.3934/proc.2011.2011.634

[13]

Carlos Gutierrez, Simon Lloyd, Vladislav Medvedev, Benito Pires, Evgeny Zhuzhoma. Transitive circle exchange transformations with flips. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 251-263. doi: 10.3934/dcds.2010.26.251

[14]

Arek Goetz. Dynamics of a piecewise rotation. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 593-608. doi: 10.3934/dcds.1998.4.593

[15]

Song-Mei Huan, Xiao-Song Yang. On the number of limit cycles in general planar piecewise linear systems. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2147-2164. doi: 10.3934/dcds.2012.32.2147

[16]

Xiaolei Zhang, Yanqin Xiong, Yi Zhang. The number of limit cycles by perturbing a piecewise linear system with three zones. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1833-1855. doi: 10.3934/cpaa.2022049

[17]

Michel Laurent, Arnaldo Nogueira. Rotation number of contracted rotations. Journal of Modern Dynamics, 2018, 12: 175-191. doi: 10.3934/jmd.2018007

[18]

Rafael De La Llave, Michael Shub, Carles Simó. Entropy estimates for a family of expanding maps of the circle. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 597-608. doi: 10.3934/dcdsb.2008.10.597

[19]

Alena Erchenko. Flexibility of Lyapunov exponents for expanding circle maps. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2325-2342. doi: 10.3934/dcds.2019098

[20]

Liviana Palmisano. Unbounded regime for circle maps with a flat interval. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2099-2122. doi: 10.3934/dcds.2015.35.2099

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]