October  2012, 32(10): 3433-3457. doi: 10.3934/dcds.2012.32.3433

Classification of Rauzy classes in the moduli space of Abelian and quadratic differentials

1. 

Aix-Marseille Université LATP, case cour A, Faculté des Sciences de Saint Jerôme, Avenue Escadrille Normandie-Niemen, 13397 Marseille cedex 20, France

Received  January 2011 Revised  March 2012 Published  May 2012

We study relations between Rauzy classes coming from an interval exchange map and the corresponding connected components of strata of the moduli space of Abelian differentials. This gives a criterion to decide whether two permutations are in the same Rauzy class or not, without actually computing them. We prove a similar result for Rauzy classes corresponding to quadratic differentials.
Citation: Corentin Boissy. Classification of Rauzy classes in the moduli space of Abelian and quadratic differentials. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3433-3457. doi: 10.3934/dcds.2012.32.3433
References:
[1]

A. Avila, S. Gouëzel and J.-C. Yoccoz, Exponential mixing for the Teichmüller flow,, Publ. Math. Inst. Hautes Études Sci., 104 (2006), 143.   Google Scholar

[2]

A. Avila and M. Viana, Simplicity of Lyapunov spectra: Proof of the Zorich-Kontsevich conjecture,, Acta Math., 198 (2007), 1.   Google Scholar

[3]

C. Boissy, Configurations of saddle connections of quadratic differentials on $\mathbb{CP}^1$ and on hyperelliptic Riemann surfaces,, Comment. Math. Helv., 84 (2009), 757.  doi: 10.4171/CMH/180.  Google Scholar

[4]

C. Boissy, Degenerations of quadratic differentials on $\mathbb{CP}^1$,, Geometry and Topology, 12 (2008), 1345.  doi: 10.2140/gt.2008.12.1345.  Google Scholar

[5]

C. Boissy, Labeled Rauzy classes and framed translation surfaces,, to appear in Annales de l'Institut Fourier, (2010).   Google Scholar

[6]

C. Boissy and E. Lanneau, Dynamics and geometry of the Rauzy-Veech induction for quadratic differentials,, Ergodic Theory Dynam. Systems, 29 (2009), 767.  doi: 10.1017/S0143385708080565.  Google Scholar

[7]

C. Danthony and A. Nogueira, Measured foliations on nonorientable surfaces,, Ann. Sci. École Norm. Sup. (4), 23 (1990), 469.   Google Scholar

[8]

A. Douady and J. Hubbard, On the density of Strebel differentials,, Inventiones Math., 30 (1975), 175.  doi: 10.1007/BF01425507.  Google Scholar

[9]

A. Eskin, H. Masur and A. Zorich, Moduli spaces of Abelian differentials: The principal boundary, counting problems, and the Siegel-Veech constants,, Publ. Math. Hautes Études Sci., 97 (2003), 61.   Google Scholar

[10]

J. Fickenscher, Self-inverses in Rauzy classes,, preprint, (2011).   Google Scholar

[11]

A. Katok, Interval exchange transformations and some special flows are not mixing,, Israel J. Math., 35 (1980), 301.  doi: 10.1007/BF02760655.  Google Scholar

[12]

M. Keane, Interval exchange transformations,, Math. Zeit., 141 (1975), 25.  doi: 10.1007/BF01236981.  Google Scholar

[13]

M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities,, Invent. Math., 153 (2003), 631.  doi: 10.1007/s00222-003-0303-x.  Google Scholar

[14]

E. Lanneau, Hyperelliptic components of the moduli spaces of quadratic differentials with prescribed singularities,, Comment. Math. Helv., 79 (2004), 471.   Google Scholar

[15]

E. Lanneau, Connected components of the strata of the moduli spaces of quadratic differentials,, Ann. Sci. École Norm. Sup. (4), 41 (2008), 1.   Google Scholar

[16]

S. Marmi, P. Moussa and J.-C. Yoccoz, The cohomological equation for Roth type interval exchange maps,, Journal of the Amer. Math. Soc., 18 (2005), 823.  doi: 10.1090/S0894-0347-05-00490-X.  Google Scholar

[17]

H. Masur, Interval exchange transformations and measured foliations,, Ann of Math. (2), 115 (1982), 169.  doi: 10.2307/1971341.  Google Scholar

[18]

H. Masur and J. Smillie, Quadratic differentials with prescribed singularities and pseudo-Anosov homeomorphisms,, Comment. Math. Helv., 68 (1993), 289.  doi: 10.1007/BF02565820.  Google Scholar

[19]

H. Masur and S. Tabachnikov, Rational billiards and flat structures,, IN, (2002), 1015.   Google Scholar

[20]

H. Masur and A. Zorich, Multiple saddle connections on flat surfaces and the principal boundary of the moduli space of quadratic differentials,, Geom. Funct. Anal., 18 (2008), 919.  doi: 10.1007/s00039-008-0678-3.  Google Scholar

[21]

G. Rauzy, Échanges d'intervalles et transformations induites,, Acta Arith., 34 (1979), 315.   Google Scholar

[22]

W. Veech, Gauss measures for transformations on the space of interval exchange maps,, Ann. of Math. (2), 115 (1982), 201.  doi: 10.2307/1971391.  Google Scholar

[23]

W. Veech, Moduli spaces of quadratic differentials,, J. Analyse Math., 55 (1990), 117.  doi: 10.1007/BF02789200.  Google Scholar

[24]

A. Zorich, Explicit Jenkins-Strebel representatives of all strata of Abelian and quadratic differentials,, Journal of Modern Dynamics, 2 (2008), 139.   Google Scholar

show all references

References:
[1]

A. Avila, S. Gouëzel and J.-C. Yoccoz, Exponential mixing for the Teichmüller flow,, Publ. Math. Inst. Hautes Études Sci., 104 (2006), 143.   Google Scholar

[2]

A. Avila and M. Viana, Simplicity of Lyapunov spectra: Proof of the Zorich-Kontsevich conjecture,, Acta Math., 198 (2007), 1.   Google Scholar

[3]

C. Boissy, Configurations of saddle connections of quadratic differentials on $\mathbb{CP}^1$ and on hyperelliptic Riemann surfaces,, Comment. Math. Helv., 84 (2009), 757.  doi: 10.4171/CMH/180.  Google Scholar

[4]

C. Boissy, Degenerations of quadratic differentials on $\mathbb{CP}^1$,, Geometry and Topology, 12 (2008), 1345.  doi: 10.2140/gt.2008.12.1345.  Google Scholar

[5]

C. Boissy, Labeled Rauzy classes and framed translation surfaces,, to appear in Annales de l'Institut Fourier, (2010).   Google Scholar

[6]

C. Boissy and E. Lanneau, Dynamics and geometry of the Rauzy-Veech induction for quadratic differentials,, Ergodic Theory Dynam. Systems, 29 (2009), 767.  doi: 10.1017/S0143385708080565.  Google Scholar

[7]

C. Danthony and A. Nogueira, Measured foliations on nonorientable surfaces,, Ann. Sci. École Norm. Sup. (4), 23 (1990), 469.   Google Scholar

[8]

A. Douady and J. Hubbard, On the density of Strebel differentials,, Inventiones Math., 30 (1975), 175.  doi: 10.1007/BF01425507.  Google Scholar

[9]

A. Eskin, H. Masur and A. Zorich, Moduli spaces of Abelian differentials: The principal boundary, counting problems, and the Siegel-Veech constants,, Publ. Math. Hautes Études Sci., 97 (2003), 61.   Google Scholar

[10]

J. Fickenscher, Self-inverses in Rauzy classes,, preprint, (2011).   Google Scholar

[11]

A. Katok, Interval exchange transformations and some special flows are not mixing,, Israel J. Math., 35 (1980), 301.  doi: 10.1007/BF02760655.  Google Scholar

[12]

M. Keane, Interval exchange transformations,, Math. Zeit., 141 (1975), 25.  doi: 10.1007/BF01236981.  Google Scholar

[13]

M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities,, Invent. Math., 153 (2003), 631.  doi: 10.1007/s00222-003-0303-x.  Google Scholar

[14]

E. Lanneau, Hyperelliptic components of the moduli spaces of quadratic differentials with prescribed singularities,, Comment. Math. Helv., 79 (2004), 471.   Google Scholar

[15]

E. Lanneau, Connected components of the strata of the moduli spaces of quadratic differentials,, Ann. Sci. École Norm. Sup. (4), 41 (2008), 1.   Google Scholar

[16]

S. Marmi, P. Moussa and J.-C. Yoccoz, The cohomological equation for Roth type interval exchange maps,, Journal of the Amer. Math. Soc., 18 (2005), 823.  doi: 10.1090/S0894-0347-05-00490-X.  Google Scholar

[17]

H. Masur, Interval exchange transformations and measured foliations,, Ann of Math. (2), 115 (1982), 169.  doi: 10.2307/1971341.  Google Scholar

[18]

H. Masur and J. Smillie, Quadratic differentials with prescribed singularities and pseudo-Anosov homeomorphisms,, Comment. Math. Helv., 68 (1993), 289.  doi: 10.1007/BF02565820.  Google Scholar

[19]

H. Masur and S. Tabachnikov, Rational billiards and flat structures,, IN, (2002), 1015.   Google Scholar

[20]

H. Masur and A. Zorich, Multiple saddle connections on flat surfaces and the principal boundary of the moduli space of quadratic differentials,, Geom. Funct. Anal., 18 (2008), 919.  doi: 10.1007/s00039-008-0678-3.  Google Scholar

[21]

G. Rauzy, Échanges d'intervalles et transformations induites,, Acta Arith., 34 (1979), 315.   Google Scholar

[22]

W. Veech, Gauss measures for transformations on the space of interval exchange maps,, Ann. of Math. (2), 115 (1982), 201.  doi: 10.2307/1971391.  Google Scholar

[23]

W. Veech, Moduli spaces of quadratic differentials,, J. Analyse Math., 55 (1990), 117.  doi: 10.1007/BF02789200.  Google Scholar

[24]

A. Zorich, Explicit Jenkins-Strebel representatives of all strata of Abelian and quadratic differentials,, Journal of Modern Dynamics, 2 (2008), 139.   Google Scholar

[1]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[2]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[3]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[4]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[5]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[6]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[7]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[8]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[9]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[10]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]