October  2012, 32(10): 3459-3484. doi: 10.3934/dcds.2012.32.3459

Wave breaking phenomena and global solutions for a generalized periodic two-component Camassa-Holm system

1. 

Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019-0408, United States

2. 

Department of Mathematics and Physics, Huaiyin Institute of Technology, Huaiyin, Jiangsu 223003, China

Received  April 2011 Revised  January 2012 Published  May 2012

Considered herein is the generalized two-component periodic Camassa-Holm system. The precise blow-up scenarios of strong solutions and several results of blow-up solutions with certain initial profiles are described in detail. The exact blow-up rates are also determined. Finally, a sufficient condition for global solutions is established.
Citation: Caixia Chen, Shu Wen. Wave breaking phenomena and global solutions for a generalized periodic two-component Camassa-Holm system. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3459-3484. doi: 10.3934/dcds.2012.32.3459
References:
[1]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Archive for Rational Mechanics and Analysis, 183 (2007), 215-239. doi: 10.1007/s00205-006-0010-z.

[2]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Analysis and its Applications (Singap.), 5 (2007), 1-27.

[3]

A. Constantin, On the Cauchy problem for the periodic Camassa-Holm equation, Journal of Differential Equations, 141 (1997), 218-235. doi: 10.1006/jdeq.1997.3333.

[4]

A. Constantin, On the blow-up of solutions of a periodic shallow water equation, Journal of Nonlinear Science, 10 (2000), 391-399. doi: 10.1007/s003329910017.

[5]

A. Constantin, The trajectories of particles in Stokes waves, Inventiones Mathematicae, 166 (2006), 523-535. doi: 10.1007/s00222-006-0002-5.

[6]

A. Constantin and R. S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis, Fluid Dynamics Research, 40 (2008), 175-211. doi: 10.1016/j.fluiddyn.2007.06.004.

[7]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Mathematica, 181 (1998), 229-243. doi: 10.1007/BF02392586.

[8]

A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomenon for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504. doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5.

[9]

A. Constantin and R. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132. doi: 10.1016/j.physleta.2008.10.050.

[10]

A. Constantin and H. P. Mckean, A shallow water equation on the circle, Communications on Pure and Applied Mathematics, 52 (1999), 949-982. doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D.

[11]

A. Constantin and W. A. Strauss, Stability of peakons, Communications on Pure and Applied Mathematics, 53 (2000), 603-610. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.3.CO;2-C.

[12]

A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons, Journal of Nonlinear Science, 12 (2002), 415-422. doi: 10.1007/s00332-002-0517-x.

[13]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries, Phys. D., 4 (1981/82), 47-66.

[14]

A. Himonas and G. Misiolek, The Cauchy problem for an integrable shallow water equation, Differential Integral Equations, 14 (2001), 821-831.

[15]

A. Shabat and L. Martínez Alonso, On the prolongation of a hierarchy of hydrodynamic chains, in "New Trends in Integrability and Partial Solvability," NATO Sci. Ser. II Math. Phys. Chem., 132, Kluwer Acad. Publ., Dordrecht, (2004), 263-280.

[16]

C. Guan and Z. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system, Journal of Differential Equations, 248 (2010), 2003-2014. doi: 10.1016/j.jde.2009.08.002.

[17]

C. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Communications on Pure and Applied Mathematics, 46 (1993), 527-620. doi: 10.1002/cpa.3160460405.

[18]

D. Henry, Infinite propagation speed for a two component Camassa-Holm equation, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 597-606. doi: 10.3934/dcdsb.2009.12.597.

[19]

G. B. Whitham, "Linear and Nonlinear Waves," Reprint of the 1974 original, Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1999.

[20]

G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system, Journal of Functional Analysis, 258 (2010), 4251-4278. doi: 10.1016/j.jfa.2010.02.008.

[21]

G. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system, Mathematische Zeitschrift, 268 (2011), 45-66. doi: 10.1007/s00209-009-0660-2.

[22]

G. Misiołek, Classical solutions of the periodic Camassa-Holm equation, Geom. Funct. Anal., 12 (2002), 1080-1104. doi: 10.1007/PL00012648.

[23]

G. Rodríguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46 (2001), 309-327. doi: 10.1016/S0362-546X(01)00791-X.

[24]

H. Aratyn, J. F. Gomes and A. H. Zimerman, On a negative flow of the AKNS hierarchy and its relation to a two-component Camassa-Holm equation, SIGMA Symmetry, Integrability and Geometry: Methods and Applications, 2 (2006), Paper 070, 12 pp.

[25]

H. P. Mckean, Breakdown of a shallow water equation, Asian Journal of Mathematics, 2 (1998), 867-874.

[26]

J. Escher, O. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, Discrete Contin. Dyn. Syst., 19 (2007), 493-513.

[27]

J. F. Toland, Stokes waves, Topological Methods in Nonlinear Analysis, 7 (1996), 1-48.

[28]

J. Lenells, Stability of periodic peakons, International Mathematics Research Notices, 2004, 485-499.

[29]

M. Chen, S.-Q. Liu and Y. Zhang, A two-component generalization of the Camassa-Holm equation and its solutions, Letters in Mathematical Physics, 75 (2006), 1-15. doi: 10.1007/s11005-005-0041-7.

[30]

O. Mustafa, On smooth traveling waves of an integrable two-component Camassa-Holm shallow water system, Wave Motion, 46 (2009), 397-402. doi: 10.1016/j.wavemoti.2009.06.011.

[31]

P. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E (3), 53 (1996), 1900-1906. doi: 10.1103/PhysRevE.53.1900.

[32]

Q. Hu and Z. Yin, Blowup phenomena for a new periodic nonlinearly dispersive wave equation, Math. Nachr., 283 (2010), 1613-1628. doi: 10.1002/mana.200810075.

[33]

R. Beals, D. Sattinger and J. Szmigielski, Multi-peakons and a theorem of Stieltjes, Inverse Problems, 15 (1999), L1-L4. doi: 10.1088/0266-5611/15/1/001.

[34]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Physical Review Letters, 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661.

[35]

R. Ivanov, Two-component integrable systems modelling shallow water waves: The constant vorticity case, Wave Motion, 46 (2009), 389-396. doi: 10.1016/j.wavemoti.2009.06.012.

[36]

R. M. Chen and Y. Liu, Wave-breaking and global existence for a generalized two-component Camassa-Holm system, Int. Math. Res. Not., 2011, 1381-1416.

[37]

T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, in "Spectral Theory and Differential Equations" (Proc. Sympos., Dundee, 1974, dedicated to Konrad Jörgens), Lecture Notes in Mathematics, 448, Springer, Berlin, (1975), 25-70.

[38]

T. Tao, Low-regularity global solutions to nonlinear dispersive equations, in "Survey in Analysis and Operator Theory" (Canberra, 2001), Proc. Centre Math. Appl. Austral. Nat. Univ., 40, Austral. Nat. Univ., Canberra, (2002), 19-48.

[39]

Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinear dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63. doi: 10.1006/jdeq.1999.3683.

[40]

Y. Liu and P. Zhang, Stability of solitary waves and wave-breaking phenomena for the two-component Camassa-Holm system, International Mathematics Research Notices, 2010, 1981-2021.

[41]

Z. Popowicz, A 2-component or N=2 supersymmetric Camassa-Holm equation, Physics Letters A, 354 (2006), 110-114. doi: 10.1016/j.physleta.2006.01.027.

[42]

Z. Yin, On the blow-up of solutions of the periodic Camassa-Holm equation, Dyn. Cont. Discrete Impuls. Syst. Ser. A Math. Anal., 12 (2005), 375-381.

show all references

References:
[1]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Archive for Rational Mechanics and Analysis, 183 (2007), 215-239. doi: 10.1007/s00205-006-0010-z.

[2]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Analysis and its Applications (Singap.), 5 (2007), 1-27.

[3]

A. Constantin, On the Cauchy problem for the periodic Camassa-Holm equation, Journal of Differential Equations, 141 (1997), 218-235. doi: 10.1006/jdeq.1997.3333.

[4]

A. Constantin, On the blow-up of solutions of a periodic shallow water equation, Journal of Nonlinear Science, 10 (2000), 391-399. doi: 10.1007/s003329910017.

[5]

A. Constantin, The trajectories of particles in Stokes waves, Inventiones Mathematicae, 166 (2006), 523-535. doi: 10.1007/s00222-006-0002-5.

[6]

A. Constantin and R. S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis, Fluid Dynamics Research, 40 (2008), 175-211. doi: 10.1016/j.fluiddyn.2007.06.004.

[7]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Mathematica, 181 (1998), 229-243. doi: 10.1007/BF02392586.

[8]

A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomenon for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504. doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5.

[9]

A. Constantin and R. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132. doi: 10.1016/j.physleta.2008.10.050.

[10]

A. Constantin and H. P. Mckean, A shallow water equation on the circle, Communications on Pure and Applied Mathematics, 52 (1999), 949-982. doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D.

[11]

A. Constantin and W. A. Strauss, Stability of peakons, Communications on Pure and Applied Mathematics, 53 (2000), 603-610. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.3.CO;2-C.

[12]

A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons, Journal of Nonlinear Science, 12 (2002), 415-422. doi: 10.1007/s00332-002-0517-x.

[13]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries, Phys. D., 4 (1981/82), 47-66.

[14]

A. Himonas and G. Misiolek, The Cauchy problem for an integrable shallow water equation, Differential Integral Equations, 14 (2001), 821-831.

[15]

A. Shabat and L. Martínez Alonso, On the prolongation of a hierarchy of hydrodynamic chains, in "New Trends in Integrability and Partial Solvability," NATO Sci. Ser. II Math. Phys. Chem., 132, Kluwer Acad. Publ., Dordrecht, (2004), 263-280.

[16]

C. Guan and Z. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system, Journal of Differential Equations, 248 (2010), 2003-2014. doi: 10.1016/j.jde.2009.08.002.

[17]

C. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Communications on Pure and Applied Mathematics, 46 (1993), 527-620. doi: 10.1002/cpa.3160460405.

[18]

D. Henry, Infinite propagation speed for a two component Camassa-Holm equation, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 597-606. doi: 10.3934/dcdsb.2009.12.597.

[19]

G. B. Whitham, "Linear and Nonlinear Waves," Reprint of the 1974 original, Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1999.

[20]

G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system, Journal of Functional Analysis, 258 (2010), 4251-4278. doi: 10.1016/j.jfa.2010.02.008.

[21]

G. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system, Mathematische Zeitschrift, 268 (2011), 45-66. doi: 10.1007/s00209-009-0660-2.

[22]

G. Misiołek, Classical solutions of the periodic Camassa-Holm equation, Geom. Funct. Anal., 12 (2002), 1080-1104. doi: 10.1007/PL00012648.

[23]

G. Rodríguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46 (2001), 309-327. doi: 10.1016/S0362-546X(01)00791-X.

[24]

H. Aratyn, J. F. Gomes and A. H. Zimerman, On a negative flow of the AKNS hierarchy and its relation to a two-component Camassa-Holm equation, SIGMA Symmetry, Integrability and Geometry: Methods and Applications, 2 (2006), Paper 070, 12 pp.

[25]

H. P. Mckean, Breakdown of a shallow water equation, Asian Journal of Mathematics, 2 (1998), 867-874.

[26]

J. Escher, O. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, Discrete Contin. Dyn. Syst., 19 (2007), 493-513.

[27]

J. F. Toland, Stokes waves, Topological Methods in Nonlinear Analysis, 7 (1996), 1-48.

[28]

J. Lenells, Stability of periodic peakons, International Mathematics Research Notices, 2004, 485-499.

[29]

M. Chen, S.-Q. Liu and Y. Zhang, A two-component generalization of the Camassa-Holm equation and its solutions, Letters in Mathematical Physics, 75 (2006), 1-15. doi: 10.1007/s11005-005-0041-7.

[30]

O. Mustafa, On smooth traveling waves of an integrable two-component Camassa-Holm shallow water system, Wave Motion, 46 (2009), 397-402. doi: 10.1016/j.wavemoti.2009.06.011.

[31]

P. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E (3), 53 (1996), 1900-1906. doi: 10.1103/PhysRevE.53.1900.

[32]

Q. Hu and Z. Yin, Blowup phenomena for a new periodic nonlinearly dispersive wave equation, Math. Nachr., 283 (2010), 1613-1628. doi: 10.1002/mana.200810075.

[33]

R. Beals, D. Sattinger and J. Szmigielski, Multi-peakons and a theorem of Stieltjes, Inverse Problems, 15 (1999), L1-L4. doi: 10.1088/0266-5611/15/1/001.

[34]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Physical Review Letters, 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661.

[35]

R. Ivanov, Two-component integrable systems modelling shallow water waves: The constant vorticity case, Wave Motion, 46 (2009), 389-396. doi: 10.1016/j.wavemoti.2009.06.012.

[36]

R. M. Chen and Y. Liu, Wave-breaking and global existence for a generalized two-component Camassa-Holm system, Int. Math. Res. Not., 2011, 1381-1416.

[37]

T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, in "Spectral Theory and Differential Equations" (Proc. Sympos., Dundee, 1974, dedicated to Konrad Jörgens), Lecture Notes in Mathematics, 448, Springer, Berlin, (1975), 25-70.

[38]

T. Tao, Low-regularity global solutions to nonlinear dispersive equations, in "Survey in Analysis and Operator Theory" (Canberra, 2001), Proc. Centre Math. Appl. Austral. Nat. Univ., 40, Austral. Nat. Univ., Canberra, (2002), 19-48.

[39]

Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinear dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63. doi: 10.1006/jdeq.1999.3683.

[40]

Y. Liu and P. Zhang, Stability of solitary waves and wave-breaking phenomena for the two-component Camassa-Holm system, International Mathematics Research Notices, 2010, 1981-2021.

[41]

Z. Popowicz, A 2-component or N=2 supersymmetric Camassa-Holm equation, Physics Letters A, 354 (2006), 110-114. doi: 10.1016/j.physleta.2006.01.027.

[42]

Z. Yin, On the blow-up of solutions of the periodic Camassa-Holm equation, Dyn. Cont. Discrete Impuls. Syst. Ser. A Math. Anal., 12 (2005), 375-381.

[1]

Katrin Grunert. Blow-up for the two-component Camassa--Holm system. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2041-2051. doi: 10.3934/dcds.2015.35.2041

[2]

Wenxia Chen, Jingyi Liu, Danping Ding, Lixin Tian. Blow-up for two-component Camassa-Holm equation with generalized weak dissipation. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3769-3784. doi: 10.3934/cpaa.2020166

[3]

Kai Yan. On the blow up solutions to a two-component cubic Camassa-Holm system with peakons. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4565-4576. doi: 10.3934/dcds.2020191

[4]

Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112

[5]

Vural Bayrak, Emil Novruzov, Ibrahim Ozkol. Local-in-space blow-up criteria for two-component nonlinear dispersive wave system. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 6023-6037. doi: 10.3934/dcds.2019263

[6]

Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493

[7]

Qiaoyi Hu, Zhijun Qiao. Persistence properties and unique continuation for a dispersionless two-component Camassa-Holm system with peakon and weak kink solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2613-2625. doi: 10.3934/dcds.2016.36.2613

[8]

Zeng Zhang, Zhaoyang Yin. Global existence for a two-component Camassa-Holm system with an arbitrary smooth function. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5523-5536. doi: 10.3934/dcds.2018243

[9]

Kai Yan, Zhaoyang Yin. Well-posedness for a modified two-component Camassa-Holm system in critical spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1699-1712. doi: 10.3934/dcds.2013.33.1699

[10]

Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025

[11]

Chenghua Wang, Rong Zeng, Shouming Zhou, Bin Wang, Chunlai Mu. Continuity for the rotation-two-component Camassa-Holm system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6633-6652. doi: 10.3934/dcdsb.2019160

[12]

Xiuting Li, Lei Zhang. The Cauchy problem and blow-up phenomena for a new integrable two-component peakon system with cubic nonlinearities. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3301-3325. doi: 10.3934/dcds.2017140

[13]

Joachim Escher, Tony Lyons. Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach. Journal of Geometric Mechanics, 2015, 7 (3) : 281-293. doi: 10.3934/jgm.2015.7.281

[14]

Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure and Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501

[15]

Min Zhu, Shuanghu Zhang. Blow-up of solutions to the periodic modified Camassa-Holm equation with varying linear dispersion. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7235-7256. doi: 10.3934/dcds.2016115

[16]

Min Zhu, Ying Wang. Blow-up of solutions to the periodic generalized modified Camassa-Holm equation with varying linear dispersion. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 645-661. doi: 10.3934/dcds.2017027

[17]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[18]

Jinlu Li, Zhaoyang Yin. Well-posedness and blow-up phenomena for a generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5493-5508. doi: 10.3934/dcds.2016042

[19]

Yingying Li, Ying Fu, Changzheng Qu. The two-component $ \mu $-Camassa–Holm system with peaked solutions. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5929-5954. doi: 10.3934/dcds.2020253

[20]

Meiling Yang, Yongsheng Li, Zhijun Qiao. Persistence properties and wave-breaking criteria for a generalized two-component rotational b-family system. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2475-2493. doi: 10.3934/dcds.2020122

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]