October  2012, 32(10): 3459-3484. doi: 10.3934/dcds.2012.32.3459

Wave breaking phenomena and global solutions for a generalized periodic two-component Camassa-Holm system

1. 

Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019-0408, United States

2. 

Department of Mathematics and Physics, Huaiyin Institute of Technology, Huaiyin, Jiangsu 223003, China

Received  April 2011 Revised  January 2012 Published  May 2012

Considered herein is the generalized two-component periodic Camassa-Holm system. The precise blow-up scenarios of strong solutions and several results of blow-up solutions with certain initial profiles are described in detail. The exact blow-up rates are also determined. Finally, a sufficient condition for global solutions is established.
Citation: Caixia Chen, Shu Wen. Wave breaking phenomena and global solutions for a generalized periodic two-component Camassa-Holm system. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3459-3484. doi: 10.3934/dcds.2012.32.3459
References:
[1]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Archive for Rational Mechanics and Analysis, 183 (2007), 215.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[2]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Analysis and its Applications (Singap.), 5 (2007), 1.   Google Scholar

[3]

A. Constantin, On the Cauchy problem for the periodic Camassa-Holm equation,, Journal of Differential Equations, 141 (1997), 218.  doi: 10.1006/jdeq.1997.3333.  Google Scholar

[4]

A. Constantin, On the blow-up of solutions of a periodic shallow water equation,, Journal of Nonlinear Science, 10 (2000), 391.  doi: 10.1007/s003329910017.  Google Scholar

[5]

A. Constantin, The trajectories of particles in Stokes waves,, Inventiones Mathematicae, 166 (2006), 523.  doi: 10.1007/s00222-006-0002-5.  Google Scholar

[6]

A. Constantin and R. S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis,, Fluid Dynamics Research, 40 (2008), 175.  doi: 10.1016/j.fluiddyn.2007.06.004.  Google Scholar

[7]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Mathematica, 181 (1998), 229.  doi: 10.1007/BF02392586.  Google Scholar

[8]

A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomenon for a periodic quasi-linear hyperbolic equation,, Comm. Pure Appl. Math., 51 (1998), 475.  doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5.  Google Scholar

[9]

A. Constantin and R. Ivanov, On an integrable two-component Camassa-Holm shallow water system,, Phys. Lett. A, 372 (2008), 7129.  doi: 10.1016/j.physleta.2008.10.050.  Google Scholar

[10]

A. Constantin and H. P. Mckean, A shallow water equation on the circle,, Communications on Pure and Applied Mathematics, 52 (1999), 949.  doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D.  Google Scholar

[11]

A. Constantin and W. A. Strauss, Stability of peakons,, Communications on Pure and Applied Mathematics, 53 (2000), 603.  doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.3.CO;2-C.  Google Scholar

[12]

A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons,, Journal of Nonlinear Science, 12 (2002), 415.  doi: 10.1007/s00332-002-0517-x.  Google Scholar

[13]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries,, Phys. D., 4 (): 47.   Google Scholar

[14]

A. Himonas and G. Misiolek, The Cauchy problem for an integrable shallow water equation,, Differential Integral Equations, 14 (2001), 821.   Google Scholar

[15]

A. Shabat and L. Martínez Alonso, On the prolongation of a hierarchy of hydrodynamic chains,, in, 132 (2004), 263.   Google Scholar

[16]

C. Guan and Z. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system,, Journal of Differential Equations, 248 (2010), 2003.  doi: 10.1016/j.jde.2009.08.002.  Google Scholar

[17]

C. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle,, Communications on Pure and Applied Mathematics, 46 (1993), 527.  doi: 10.1002/cpa.3160460405.  Google Scholar

[18]

D. Henry, Infinite propagation speed for a two component Camassa-Holm equation,, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 597.  doi: 10.3934/dcdsb.2009.12.597.  Google Scholar

[19]

G. B. Whitham, "Linear and Nonlinear Waves,", Reprint of the 1974 original, (1974).   Google Scholar

[20]

G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system,, Journal of Functional Analysis, 258 (2010), 4251.  doi: 10.1016/j.jfa.2010.02.008.  Google Scholar

[21]

G. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system,, Mathematische Zeitschrift, 268 (2011), 45.  doi: 10.1007/s00209-009-0660-2.  Google Scholar

[22]

G. Misiołek, Classical solutions of the periodic Camassa-Holm equation,, Geom. Funct. Anal., 12 (2002), 1080.  doi: 10.1007/PL00012648.  Google Scholar

[23]

G. Rodríguez-Blanco, On the Cauchy problem for the Camassa-Holm equation,, Nonlinear Anal., 46 (2001), 309.  doi: 10.1016/S0362-546X(01)00791-X.  Google Scholar

[24]

H. Aratyn, J. F. Gomes and A. H. Zimerman, On a negative flow of the AKNS hierarchy and its relation to a two-component Camassa-Holm equation,, SIGMA Symmetry, 2 (2006).   Google Scholar

[25]

H. P. Mckean, Breakdown of a shallow water equation,, Asian Journal of Mathematics, 2 (1998), 867.   Google Scholar

[26]

J. Escher, O. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation,, Discrete Contin. Dyn. Syst., 19 (2007), 493.   Google Scholar

[27]

J. F. Toland, Stokes waves,, Topological Methods in Nonlinear Analysis, 7 (1996), 1.   Google Scholar

[28]

J. Lenells, Stability of periodic peakons,, International Mathematics Research Notices, 2004 (): 485.   Google Scholar

[29]

M. Chen, S.-Q. Liu and Y. Zhang, A two-component generalization of the Camassa-Holm equation and its solutions,, Letters in Mathematical Physics, 75 (2006), 1.  doi: 10.1007/s11005-005-0041-7.  Google Scholar

[30]

O. Mustafa, On smooth traveling waves of an integrable two-component Camassa-Holm shallow water system,, Wave Motion, 46 (2009), 397.  doi: 10.1016/j.wavemoti.2009.06.011.  Google Scholar

[31]

P. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support,, Phys. Rev. E (3), 53 (1996), 1900.  doi: 10.1103/PhysRevE.53.1900.  Google Scholar

[32]

Q. Hu and Z. Yin, Blowup phenomena for a new periodic nonlinearly dispersive wave equation,, Math. Nachr., 283 (2010), 1613.  doi: 10.1002/mana.200810075.  Google Scholar

[33]

R. Beals, D. Sattinger and J. Szmigielski, Multi-peakons and a theorem of Stieltjes,, Inverse Problems, 15 (1999).  doi: 10.1088/0266-5611/15/1/001.  Google Scholar

[34]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Physical Review Letters, 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[35]

R. Ivanov, Two-component integrable systems modelling shallow water waves: The constant vorticity case,, Wave Motion, 46 (2009), 389.  doi: 10.1016/j.wavemoti.2009.06.012.  Google Scholar

[36]

R. M. Chen and Y. Liu, Wave-breaking and global existence for a generalized two-component Camassa-Holm system,, Int. Math. Res. Not., 2011 (): 1381.   Google Scholar

[37]

T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations,, in, 448 (1975), 25.   Google Scholar

[38]

T. Tao, Low-regularity global solutions to nonlinear dispersive equations,, in, 40 (2002), 19.   Google Scholar

[39]

Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinear dispersive model wave equation,, J. Differential Equations, 162 (2000), 27.  doi: 10.1006/jdeq.1999.3683.  Google Scholar

[40]

Y. Liu and P. Zhang, Stability of solitary waves and wave-breaking phenomena for the two-component Camassa-Holm system,, International Mathematics Research Notices, 2010 (): 1981.   Google Scholar

[41]

Z. Popowicz, A 2-component or N=2 supersymmetric Camassa-Holm equation,, Physics Letters A, 354 (2006), 110.  doi: 10.1016/j.physleta.2006.01.027.  Google Scholar

[42]

Z. Yin, On the blow-up of solutions of the periodic Camassa-Holm equation,, Dyn. Cont. Discrete Impuls. Syst. Ser. A Math. Anal., 12 (2005), 375.   Google Scholar

show all references

References:
[1]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Archive for Rational Mechanics and Analysis, 183 (2007), 215.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[2]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Analysis and its Applications (Singap.), 5 (2007), 1.   Google Scholar

[3]

A. Constantin, On the Cauchy problem for the periodic Camassa-Holm equation,, Journal of Differential Equations, 141 (1997), 218.  doi: 10.1006/jdeq.1997.3333.  Google Scholar

[4]

A. Constantin, On the blow-up of solutions of a periodic shallow water equation,, Journal of Nonlinear Science, 10 (2000), 391.  doi: 10.1007/s003329910017.  Google Scholar

[5]

A. Constantin, The trajectories of particles in Stokes waves,, Inventiones Mathematicae, 166 (2006), 523.  doi: 10.1007/s00222-006-0002-5.  Google Scholar

[6]

A. Constantin and R. S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis,, Fluid Dynamics Research, 40 (2008), 175.  doi: 10.1016/j.fluiddyn.2007.06.004.  Google Scholar

[7]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Mathematica, 181 (1998), 229.  doi: 10.1007/BF02392586.  Google Scholar

[8]

A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomenon for a periodic quasi-linear hyperbolic equation,, Comm. Pure Appl. Math., 51 (1998), 475.  doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5.  Google Scholar

[9]

A. Constantin and R. Ivanov, On an integrable two-component Camassa-Holm shallow water system,, Phys. Lett. A, 372 (2008), 7129.  doi: 10.1016/j.physleta.2008.10.050.  Google Scholar

[10]

A. Constantin and H. P. Mckean, A shallow water equation on the circle,, Communications on Pure and Applied Mathematics, 52 (1999), 949.  doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D.  Google Scholar

[11]

A. Constantin and W. A. Strauss, Stability of peakons,, Communications on Pure and Applied Mathematics, 53 (2000), 603.  doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.3.CO;2-C.  Google Scholar

[12]

A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons,, Journal of Nonlinear Science, 12 (2002), 415.  doi: 10.1007/s00332-002-0517-x.  Google Scholar

[13]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries,, Phys. D., 4 (): 47.   Google Scholar

[14]

A. Himonas and G. Misiolek, The Cauchy problem for an integrable shallow water equation,, Differential Integral Equations, 14 (2001), 821.   Google Scholar

[15]

A. Shabat and L. Martínez Alonso, On the prolongation of a hierarchy of hydrodynamic chains,, in, 132 (2004), 263.   Google Scholar

[16]

C. Guan and Z. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system,, Journal of Differential Equations, 248 (2010), 2003.  doi: 10.1016/j.jde.2009.08.002.  Google Scholar

[17]

C. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle,, Communications on Pure and Applied Mathematics, 46 (1993), 527.  doi: 10.1002/cpa.3160460405.  Google Scholar

[18]

D. Henry, Infinite propagation speed for a two component Camassa-Holm equation,, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 597.  doi: 10.3934/dcdsb.2009.12.597.  Google Scholar

[19]

G. B. Whitham, "Linear and Nonlinear Waves,", Reprint of the 1974 original, (1974).   Google Scholar

[20]

G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system,, Journal of Functional Analysis, 258 (2010), 4251.  doi: 10.1016/j.jfa.2010.02.008.  Google Scholar

[21]

G. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system,, Mathematische Zeitschrift, 268 (2011), 45.  doi: 10.1007/s00209-009-0660-2.  Google Scholar

[22]

G. Misiołek, Classical solutions of the periodic Camassa-Holm equation,, Geom. Funct. Anal., 12 (2002), 1080.  doi: 10.1007/PL00012648.  Google Scholar

[23]

G. Rodríguez-Blanco, On the Cauchy problem for the Camassa-Holm equation,, Nonlinear Anal., 46 (2001), 309.  doi: 10.1016/S0362-546X(01)00791-X.  Google Scholar

[24]

H. Aratyn, J. F. Gomes and A. H. Zimerman, On a negative flow of the AKNS hierarchy and its relation to a two-component Camassa-Holm equation,, SIGMA Symmetry, 2 (2006).   Google Scholar

[25]

H. P. Mckean, Breakdown of a shallow water equation,, Asian Journal of Mathematics, 2 (1998), 867.   Google Scholar

[26]

J. Escher, O. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation,, Discrete Contin. Dyn. Syst., 19 (2007), 493.   Google Scholar

[27]

J. F. Toland, Stokes waves,, Topological Methods in Nonlinear Analysis, 7 (1996), 1.   Google Scholar

[28]

J. Lenells, Stability of periodic peakons,, International Mathematics Research Notices, 2004 (): 485.   Google Scholar

[29]

M. Chen, S.-Q. Liu and Y. Zhang, A two-component generalization of the Camassa-Holm equation and its solutions,, Letters in Mathematical Physics, 75 (2006), 1.  doi: 10.1007/s11005-005-0041-7.  Google Scholar

[30]

O. Mustafa, On smooth traveling waves of an integrable two-component Camassa-Holm shallow water system,, Wave Motion, 46 (2009), 397.  doi: 10.1016/j.wavemoti.2009.06.011.  Google Scholar

[31]

P. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support,, Phys. Rev. E (3), 53 (1996), 1900.  doi: 10.1103/PhysRevE.53.1900.  Google Scholar

[32]

Q. Hu and Z. Yin, Blowup phenomena for a new periodic nonlinearly dispersive wave equation,, Math. Nachr., 283 (2010), 1613.  doi: 10.1002/mana.200810075.  Google Scholar

[33]

R. Beals, D. Sattinger and J. Szmigielski, Multi-peakons and a theorem of Stieltjes,, Inverse Problems, 15 (1999).  doi: 10.1088/0266-5611/15/1/001.  Google Scholar

[34]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Physical Review Letters, 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[35]

R. Ivanov, Two-component integrable systems modelling shallow water waves: The constant vorticity case,, Wave Motion, 46 (2009), 389.  doi: 10.1016/j.wavemoti.2009.06.012.  Google Scholar

[36]

R. M. Chen and Y. Liu, Wave-breaking and global existence for a generalized two-component Camassa-Holm system,, Int. Math. Res. Not., 2011 (): 1381.   Google Scholar

[37]

T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations,, in, 448 (1975), 25.   Google Scholar

[38]

T. Tao, Low-regularity global solutions to nonlinear dispersive equations,, in, 40 (2002), 19.   Google Scholar

[39]

Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinear dispersive model wave equation,, J. Differential Equations, 162 (2000), 27.  doi: 10.1006/jdeq.1999.3683.  Google Scholar

[40]

Y. Liu and P. Zhang, Stability of solitary waves and wave-breaking phenomena for the two-component Camassa-Holm system,, International Mathematics Research Notices, 2010 (): 1981.   Google Scholar

[41]

Z. Popowicz, A 2-component or N=2 supersymmetric Camassa-Holm equation,, Physics Letters A, 354 (2006), 110.  doi: 10.1016/j.physleta.2006.01.027.  Google Scholar

[42]

Z. Yin, On the blow-up of solutions of the periodic Camassa-Holm equation,, Dyn. Cont. Discrete Impuls. Syst. Ser. A Math. Anal., 12 (2005), 375.   Google Scholar

[1]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[2]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[3]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[4]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[5]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[6]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[7]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[8]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[9]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[10]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[11]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[12]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[13]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[14]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[15]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[16]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[17]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[18]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[19]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[20]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]