October  2012, 32(10): 3501-3524. doi: 10.3934/dcds.2012.32.3501

Formation of singularities to quasi-linear hyperbolic systems with initial data of small BV norm

1. 

Department of Mathematics, Shanghai Normal University, Shanghai 200234, China

Received  May 2011 Revised  November 2011 Published  May 2012

In this paper, we investigate the formation of singularities of the classical solution to the Cauchy problem of quasi-linear hyperbolic system and give a sharp limit formula for the lifespan of the classical solution. It is important that we only require that the initial data are sufficiently small in the $L^1$ sense and the BV sense.
Citation: Wen-Rong Dai. Formation of singularities to quasi-linear hyperbolic systems with initial data of small BV norm. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3501-3524. doi: 10.3934/dcds.2012.32.3501
References:
[1]

S. Bianchini and A. Bressan, Vanishing viscousity solutions to nonlinear hyperbolic systems,, Ann. Math., 161 (2005), 223.  doi: 10.4007/annals.2005.161.223.  Google Scholar

[2]

A. Bressan, Contractive metrices for nonlinear hyperbolic systems,, Indiana U. Math. J., 37 (1988), 409.  doi: 10.1512/iumj.1988.37.37021.  Google Scholar

[3]

A. Bressan, "Hyerbolic Systems of Conservation Laws: The One Dimensional Cauchy Problem,", Oxford University Press, (2000).   Google Scholar

[4]

Wen-Rong Dai, Asymptotic behavior of classical solutions of quasilinear non-strictly hyperbolic systems with weakly linear degeneracy,, Chinese Ann. Math. B, 27 (2006), 263.  doi: 10.1007/s11401-004-0523-4.  Google Scholar

[5]

Wen-Rong Dai, Geometry of quasilinear hyperbolic systems with characteristic fields of constant multiplicity,, J. Math. Anal. Appl., 327 (2007), 188.  doi: 10.1016/j.jmaa.2006.04.014.  Google Scholar

[6]

Wen-Rong Dai, Analysis of singularities for one-dimensional quasilinear hyperbolic systems,, J. Math. Anal. Appl., 362 (2010), 72.  doi: 10.1016/j.jmaa.2009.08.035.  Google Scholar

[7]

Wen-Rong Dai and De-Xing Kong, Global existence and asymptotic behavior of classical solutions of quasi-linear hyperbolic systems with linearly degenerate characteristic fields,, J. Differ. Equations, 235 (2007), 127.  doi: 10.1016/j.jde.2006.12.020.  Google Scholar

[8]

L. Hörmander, The lifespan of classical solutions of nonlinear hyperbolic equations,, Lecture Notes in Mathematics, 1256 (1987), 214.  doi: 10.1007/BFb0077745.  Google Scholar

[9]

F. John, Formation of singularities in one-dimensional nonlinear wave propagation,, Commun. Pur. Appl. Math., 27 (1974), 377.  doi: 10.1002/cpa.3160270307.  Google Scholar

[10]

De-xing Kong, Lifespan of classical solutions to quasilinear hyperbolic systems with slow decay initial data,, Chinese Ann. Math. B, 21 (2000), 413.  doi: 10.1142/S0252959900000431.  Google Scholar

[11]

De-xing Kong, "Cauchy Problem for Quasilinear Hyperbolic Systems,", MSJ Memoirs, 6 (2000).   Google Scholar

[12]

De-xing Kong, Formation and propagation of singularities for $2\times 2$ quasilinear hyperbolic systems,, T. Am. Math. Soc., 354 (2002), 3155.  doi: 10.1090/S0002-9947-02-02982-3.  Google Scholar

[13]

De-xing Kong and Ta-tsien Li, A note on blow-up phenomenon of classical solutions to quasilinear hyperbolic systems,, Nonlinear Anal., 49 (2002), 535.  doi: 10.1016/S0362-546X(01)00121-3.  Google Scholar

[14]

De-xing Kong and Tong Yang, Asymtotic behavior of global classical solutions of quasilinear hyperbolic systems,, Commun. Part. Diff. Eq., 28 (2003), 1203.  doi: 10.1081/PDE-120021192.  Google Scholar

[15]

Ta-Tsien Li and De-xing Kong, Global classical solutions with small amplitude for general quasi-linear hyperbolic systems,, in, (1999), 203.   Google Scholar

[16]

Ta-Tsien Li, De-Xing Kong and Yi Zhou, Global classical solutions for general quasilinear nonstrictly hyperbolic systems,, Nonlinear Studies, 3 (1996), 203.   Google Scholar

[17]

Ta-Tsien Li, Yi Zhou and De-Xing Kong, Weak linear degeneracy and global classical solutions for general quasi-linear hyperbolic systems,, Commun. Part. Diff. Eq., 19 (1994), 1263.  doi: 10.1080/03605309408821055.  Google Scholar

[18]

Ta-Tsien Li, Yi Zhou and De-Xing Kong, Global classical solutions for general quasi-linear hyperbolic systems with decay initial data,, Nonlinear Anal., 28 (1997), 1299.  doi: 10.1016/0362-546X(95)00228-N.  Google Scholar

[19]

Tai-Ping Liu, Development of singularities in the nonlinear waves for quasi-linear hyperbolic partial differential equations,, J. Differ. Equations, 33 (1979), 92.  doi: 10.1016/0022-0396(79)90082-2.  Google Scholar

[20]

M. Schatzman, Continuous Glimm functional and uniqueness of the solution of Riemann problem,, Indiana U. Math. J., 34 (1985), 533.  doi: 10.1512/iumj.1985.34.34030.  Google Scholar

[21]

M. Schatzman, The geometry of continuous Glimm functionals,, Lectures in Applied Mathematics, 23 (1986), 417.   Google Scholar

[22]

Yi Zhou, Global classical solutions to quasilinear hyperbolic systems with weak linear degeneracy,, Chinese Ann. Math. Ser. B, 25 (2004), 37.  doi: 10.1142/S0252959904000469.  Google Scholar

[23]

Yi Zhou and Yong-Fu Yang, Global classical solutions of mixed initial-boundary value problem for quasilinear hyperbolic systems,, Nonlinear Anal., 73 (2010), 1543.  doi: 10.1016/j.na.2010.04.057.  Google Scholar

show all references

References:
[1]

S. Bianchini and A. Bressan, Vanishing viscousity solutions to nonlinear hyperbolic systems,, Ann. Math., 161 (2005), 223.  doi: 10.4007/annals.2005.161.223.  Google Scholar

[2]

A. Bressan, Contractive metrices for nonlinear hyperbolic systems,, Indiana U. Math. J., 37 (1988), 409.  doi: 10.1512/iumj.1988.37.37021.  Google Scholar

[3]

A. Bressan, "Hyerbolic Systems of Conservation Laws: The One Dimensional Cauchy Problem,", Oxford University Press, (2000).   Google Scholar

[4]

Wen-Rong Dai, Asymptotic behavior of classical solutions of quasilinear non-strictly hyperbolic systems with weakly linear degeneracy,, Chinese Ann. Math. B, 27 (2006), 263.  doi: 10.1007/s11401-004-0523-4.  Google Scholar

[5]

Wen-Rong Dai, Geometry of quasilinear hyperbolic systems with characteristic fields of constant multiplicity,, J. Math. Anal. Appl., 327 (2007), 188.  doi: 10.1016/j.jmaa.2006.04.014.  Google Scholar

[6]

Wen-Rong Dai, Analysis of singularities for one-dimensional quasilinear hyperbolic systems,, J. Math. Anal. Appl., 362 (2010), 72.  doi: 10.1016/j.jmaa.2009.08.035.  Google Scholar

[7]

Wen-Rong Dai and De-Xing Kong, Global existence and asymptotic behavior of classical solutions of quasi-linear hyperbolic systems with linearly degenerate characteristic fields,, J. Differ. Equations, 235 (2007), 127.  doi: 10.1016/j.jde.2006.12.020.  Google Scholar

[8]

L. Hörmander, The lifespan of classical solutions of nonlinear hyperbolic equations,, Lecture Notes in Mathematics, 1256 (1987), 214.  doi: 10.1007/BFb0077745.  Google Scholar

[9]

F. John, Formation of singularities in one-dimensional nonlinear wave propagation,, Commun. Pur. Appl. Math., 27 (1974), 377.  doi: 10.1002/cpa.3160270307.  Google Scholar

[10]

De-xing Kong, Lifespan of classical solutions to quasilinear hyperbolic systems with slow decay initial data,, Chinese Ann. Math. B, 21 (2000), 413.  doi: 10.1142/S0252959900000431.  Google Scholar

[11]

De-xing Kong, "Cauchy Problem for Quasilinear Hyperbolic Systems,", MSJ Memoirs, 6 (2000).   Google Scholar

[12]

De-xing Kong, Formation and propagation of singularities for $2\times 2$ quasilinear hyperbolic systems,, T. Am. Math. Soc., 354 (2002), 3155.  doi: 10.1090/S0002-9947-02-02982-3.  Google Scholar

[13]

De-xing Kong and Ta-tsien Li, A note on blow-up phenomenon of classical solutions to quasilinear hyperbolic systems,, Nonlinear Anal., 49 (2002), 535.  doi: 10.1016/S0362-546X(01)00121-3.  Google Scholar

[14]

De-xing Kong and Tong Yang, Asymtotic behavior of global classical solutions of quasilinear hyperbolic systems,, Commun. Part. Diff. Eq., 28 (2003), 1203.  doi: 10.1081/PDE-120021192.  Google Scholar

[15]

Ta-Tsien Li and De-xing Kong, Global classical solutions with small amplitude for general quasi-linear hyperbolic systems,, in, (1999), 203.   Google Scholar

[16]

Ta-Tsien Li, De-Xing Kong and Yi Zhou, Global classical solutions for general quasilinear nonstrictly hyperbolic systems,, Nonlinear Studies, 3 (1996), 203.   Google Scholar

[17]

Ta-Tsien Li, Yi Zhou and De-Xing Kong, Weak linear degeneracy and global classical solutions for general quasi-linear hyperbolic systems,, Commun. Part. Diff. Eq., 19 (1994), 1263.  doi: 10.1080/03605309408821055.  Google Scholar

[18]

Ta-Tsien Li, Yi Zhou and De-Xing Kong, Global classical solutions for general quasi-linear hyperbolic systems with decay initial data,, Nonlinear Anal., 28 (1997), 1299.  doi: 10.1016/0362-546X(95)00228-N.  Google Scholar

[19]

Tai-Ping Liu, Development of singularities in the nonlinear waves for quasi-linear hyperbolic partial differential equations,, J. Differ. Equations, 33 (1979), 92.  doi: 10.1016/0022-0396(79)90082-2.  Google Scholar

[20]

M. Schatzman, Continuous Glimm functional and uniqueness of the solution of Riemann problem,, Indiana U. Math. J., 34 (1985), 533.  doi: 10.1512/iumj.1985.34.34030.  Google Scholar

[21]

M. Schatzman, The geometry of continuous Glimm functionals,, Lectures in Applied Mathematics, 23 (1986), 417.   Google Scholar

[22]

Yi Zhou, Global classical solutions to quasilinear hyperbolic systems with weak linear degeneracy,, Chinese Ann. Math. Ser. B, 25 (2004), 37.  doi: 10.1142/S0252959904000469.  Google Scholar

[23]

Yi Zhou and Yong-Fu Yang, Global classical solutions of mixed initial-boundary value problem for quasilinear hyperbolic systems,, Nonlinear Anal., 73 (2010), 1543.  doi: 10.1016/j.na.2010.04.057.  Google Scholar

[1]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[2]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[3]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[4]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[5]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[6]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[7]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[8]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[9]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[10]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[11]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[12]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[13]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[14]

Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315

[15]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[16]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[17]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[18]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[19]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[20]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]