October  2012, 32(10): 3501-3524. doi: 10.3934/dcds.2012.32.3501

Formation of singularities to quasi-linear hyperbolic systems with initial data of small BV norm

1. 

Department of Mathematics, Shanghai Normal University, Shanghai 200234, China

Received  May 2011 Revised  November 2011 Published  May 2012

In this paper, we investigate the formation of singularities of the classical solution to the Cauchy problem of quasi-linear hyperbolic system and give a sharp limit formula for the lifespan of the classical solution. It is important that we only require that the initial data are sufficiently small in the $L^1$ sense and the BV sense.
Citation: Wen-Rong Dai. Formation of singularities to quasi-linear hyperbolic systems with initial data of small BV norm. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3501-3524. doi: 10.3934/dcds.2012.32.3501
References:
[1]

S. Bianchini and A. Bressan, Vanishing viscousity solutions to nonlinear hyperbolic systems,, Ann. Math., 161 (2005), 223.  doi: 10.4007/annals.2005.161.223.  Google Scholar

[2]

A. Bressan, Contractive metrices for nonlinear hyperbolic systems,, Indiana U. Math. J., 37 (1988), 409.  doi: 10.1512/iumj.1988.37.37021.  Google Scholar

[3]

A. Bressan, "Hyerbolic Systems of Conservation Laws: The One Dimensional Cauchy Problem,", Oxford University Press, (2000).   Google Scholar

[4]

Wen-Rong Dai, Asymptotic behavior of classical solutions of quasilinear non-strictly hyperbolic systems with weakly linear degeneracy,, Chinese Ann. Math. B, 27 (2006), 263.  doi: 10.1007/s11401-004-0523-4.  Google Scholar

[5]

Wen-Rong Dai, Geometry of quasilinear hyperbolic systems with characteristic fields of constant multiplicity,, J. Math. Anal. Appl., 327 (2007), 188.  doi: 10.1016/j.jmaa.2006.04.014.  Google Scholar

[6]

Wen-Rong Dai, Analysis of singularities for one-dimensional quasilinear hyperbolic systems,, J. Math. Anal. Appl., 362 (2010), 72.  doi: 10.1016/j.jmaa.2009.08.035.  Google Scholar

[7]

Wen-Rong Dai and De-Xing Kong, Global existence and asymptotic behavior of classical solutions of quasi-linear hyperbolic systems with linearly degenerate characteristic fields,, J. Differ. Equations, 235 (2007), 127.  doi: 10.1016/j.jde.2006.12.020.  Google Scholar

[8]

L. Hörmander, The lifespan of classical solutions of nonlinear hyperbolic equations,, Lecture Notes in Mathematics, 1256 (1987), 214.  doi: 10.1007/BFb0077745.  Google Scholar

[9]

F. John, Formation of singularities in one-dimensional nonlinear wave propagation,, Commun. Pur. Appl. Math., 27 (1974), 377.  doi: 10.1002/cpa.3160270307.  Google Scholar

[10]

De-xing Kong, Lifespan of classical solutions to quasilinear hyperbolic systems with slow decay initial data,, Chinese Ann. Math. B, 21 (2000), 413.  doi: 10.1142/S0252959900000431.  Google Scholar

[11]

De-xing Kong, "Cauchy Problem for Quasilinear Hyperbolic Systems,", MSJ Memoirs, 6 (2000).   Google Scholar

[12]

De-xing Kong, Formation and propagation of singularities for $2\times 2$ quasilinear hyperbolic systems,, T. Am. Math. Soc., 354 (2002), 3155.  doi: 10.1090/S0002-9947-02-02982-3.  Google Scholar

[13]

De-xing Kong and Ta-tsien Li, A note on blow-up phenomenon of classical solutions to quasilinear hyperbolic systems,, Nonlinear Anal., 49 (2002), 535.  doi: 10.1016/S0362-546X(01)00121-3.  Google Scholar

[14]

De-xing Kong and Tong Yang, Asymtotic behavior of global classical solutions of quasilinear hyperbolic systems,, Commun. Part. Diff. Eq., 28 (2003), 1203.  doi: 10.1081/PDE-120021192.  Google Scholar

[15]

Ta-Tsien Li and De-xing Kong, Global classical solutions with small amplitude for general quasi-linear hyperbolic systems,, in, (1999), 203.   Google Scholar

[16]

Ta-Tsien Li, De-Xing Kong and Yi Zhou, Global classical solutions for general quasilinear nonstrictly hyperbolic systems,, Nonlinear Studies, 3 (1996), 203.   Google Scholar

[17]

Ta-Tsien Li, Yi Zhou and De-Xing Kong, Weak linear degeneracy and global classical solutions for general quasi-linear hyperbolic systems,, Commun. Part. Diff. Eq., 19 (1994), 1263.  doi: 10.1080/03605309408821055.  Google Scholar

[18]

Ta-Tsien Li, Yi Zhou and De-Xing Kong, Global classical solutions for general quasi-linear hyperbolic systems with decay initial data,, Nonlinear Anal., 28 (1997), 1299.  doi: 10.1016/0362-546X(95)00228-N.  Google Scholar

[19]

Tai-Ping Liu, Development of singularities in the nonlinear waves for quasi-linear hyperbolic partial differential equations,, J. Differ. Equations, 33 (1979), 92.  doi: 10.1016/0022-0396(79)90082-2.  Google Scholar

[20]

M. Schatzman, Continuous Glimm functional and uniqueness of the solution of Riemann problem,, Indiana U. Math. J., 34 (1985), 533.  doi: 10.1512/iumj.1985.34.34030.  Google Scholar

[21]

M. Schatzman, The geometry of continuous Glimm functionals,, Lectures in Applied Mathematics, 23 (1986), 417.   Google Scholar

[22]

Yi Zhou, Global classical solutions to quasilinear hyperbolic systems with weak linear degeneracy,, Chinese Ann. Math. Ser. B, 25 (2004), 37.  doi: 10.1142/S0252959904000469.  Google Scholar

[23]

Yi Zhou and Yong-Fu Yang, Global classical solutions of mixed initial-boundary value problem for quasilinear hyperbolic systems,, Nonlinear Anal., 73 (2010), 1543.  doi: 10.1016/j.na.2010.04.057.  Google Scholar

show all references

References:
[1]

S. Bianchini and A. Bressan, Vanishing viscousity solutions to nonlinear hyperbolic systems,, Ann. Math., 161 (2005), 223.  doi: 10.4007/annals.2005.161.223.  Google Scholar

[2]

A. Bressan, Contractive metrices for nonlinear hyperbolic systems,, Indiana U. Math. J., 37 (1988), 409.  doi: 10.1512/iumj.1988.37.37021.  Google Scholar

[3]

A. Bressan, "Hyerbolic Systems of Conservation Laws: The One Dimensional Cauchy Problem,", Oxford University Press, (2000).   Google Scholar

[4]

Wen-Rong Dai, Asymptotic behavior of classical solutions of quasilinear non-strictly hyperbolic systems with weakly linear degeneracy,, Chinese Ann. Math. B, 27 (2006), 263.  doi: 10.1007/s11401-004-0523-4.  Google Scholar

[5]

Wen-Rong Dai, Geometry of quasilinear hyperbolic systems with characteristic fields of constant multiplicity,, J. Math. Anal. Appl., 327 (2007), 188.  doi: 10.1016/j.jmaa.2006.04.014.  Google Scholar

[6]

Wen-Rong Dai, Analysis of singularities for one-dimensional quasilinear hyperbolic systems,, J. Math. Anal. Appl., 362 (2010), 72.  doi: 10.1016/j.jmaa.2009.08.035.  Google Scholar

[7]

Wen-Rong Dai and De-Xing Kong, Global existence and asymptotic behavior of classical solutions of quasi-linear hyperbolic systems with linearly degenerate characteristic fields,, J. Differ. Equations, 235 (2007), 127.  doi: 10.1016/j.jde.2006.12.020.  Google Scholar

[8]

L. Hörmander, The lifespan of classical solutions of nonlinear hyperbolic equations,, Lecture Notes in Mathematics, 1256 (1987), 214.  doi: 10.1007/BFb0077745.  Google Scholar

[9]

F. John, Formation of singularities in one-dimensional nonlinear wave propagation,, Commun. Pur. Appl. Math., 27 (1974), 377.  doi: 10.1002/cpa.3160270307.  Google Scholar

[10]

De-xing Kong, Lifespan of classical solutions to quasilinear hyperbolic systems with slow decay initial data,, Chinese Ann. Math. B, 21 (2000), 413.  doi: 10.1142/S0252959900000431.  Google Scholar

[11]

De-xing Kong, "Cauchy Problem for Quasilinear Hyperbolic Systems,", MSJ Memoirs, 6 (2000).   Google Scholar

[12]

De-xing Kong, Formation and propagation of singularities for $2\times 2$ quasilinear hyperbolic systems,, T. Am. Math. Soc., 354 (2002), 3155.  doi: 10.1090/S0002-9947-02-02982-3.  Google Scholar

[13]

De-xing Kong and Ta-tsien Li, A note on blow-up phenomenon of classical solutions to quasilinear hyperbolic systems,, Nonlinear Anal., 49 (2002), 535.  doi: 10.1016/S0362-546X(01)00121-3.  Google Scholar

[14]

De-xing Kong and Tong Yang, Asymtotic behavior of global classical solutions of quasilinear hyperbolic systems,, Commun. Part. Diff. Eq., 28 (2003), 1203.  doi: 10.1081/PDE-120021192.  Google Scholar

[15]

Ta-Tsien Li and De-xing Kong, Global classical solutions with small amplitude for general quasi-linear hyperbolic systems,, in, (1999), 203.   Google Scholar

[16]

Ta-Tsien Li, De-Xing Kong and Yi Zhou, Global classical solutions for general quasilinear nonstrictly hyperbolic systems,, Nonlinear Studies, 3 (1996), 203.   Google Scholar

[17]

Ta-Tsien Li, Yi Zhou and De-Xing Kong, Weak linear degeneracy and global classical solutions for general quasi-linear hyperbolic systems,, Commun. Part. Diff. Eq., 19 (1994), 1263.  doi: 10.1080/03605309408821055.  Google Scholar

[18]

Ta-Tsien Li, Yi Zhou and De-Xing Kong, Global classical solutions for general quasi-linear hyperbolic systems with decay initial data,, Nonlinear Anal., 28 (1997), 1299.  doi: 10.1016/0362-546X(95)00228-N.  Google Scholar

[19]

Tai-Ping Liu, Development of singularities in the nonlinear waves for quasi-linear hyperbolic partial differential equations,, J. Differ. Equations, 33 (1979), 92.  doi: 10.1016/0022-0396(79)90082-2.  Google Scholar

[20]

M. Schatzman, Continuous Glimm functional and uniqueness of the solution of Riemann problem,, Indiana U. Math. J., 34 (1985), 533.  doi: 10.1512/iumj.1985.34.34030.  Google Scholar

[21]

M. Schatzman, The geometry of continuous Glimm functionals,, Lectures in Applied Mathematics, 23 (1986), 417.   Google Scholar

[22]

Yi Zhou, Global classical solutions to quasilinear hyperbolic systems with weak linear degeneracy,, Chinese Ann. Math. Ser. B, 25 (2004), 37.  doi: 10.1142/S0252959904000469.  Google Scholar

[23]

Yi Zhou and Yong-Fu Yang, Global classical solutions of mixed initial-boundary value problem for quasilinear hyperbolic systems,, Nonlinear Anal., 73 (2010), 1543.  doi: 10.1016/j.na.2010.04.057.  Google Scholar

[1]

Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure & Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435

[2]

Huiling Li, Mingxin Wang. Properties of blow-up solutions to a parabolic system with nonlinear localized terms. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 683-700. doi: 10.3934/dcds.2005.13.683

[3]

Hongwei Chen. Blow-up estimates of positive solutions of a reaction-diffusion system. Conference Publications, 2003, 2003 (Special) : 182-188. doi: 10.3934/proc.2003.2003.182

[4]

Evgeny Galakhov, Olga Salieva. Blow-up for nonlinear inequalities with gradient terms and singularities on unbounded sets. Conference Publications, 2015, 2015 (special) : 489-494. doi: 10.3934/proc.2015.0489

[5]

Satyanad Kichenassamy. Control of blow-up singularities for nonlinear wave equations. Evolution Equations & Control Theory, 2013, 2 (4) : 669-677. doi: 10.3934/eect.2013.2.669

[6]

C. Y. Chan. Recent advances in quenching and blow-up of solutions. Conference Publications, 2001, 2001 (Special) : 88-95. doi: 10.3934/proc.2001.2001.88

[7]

Marek Fila, Hiroshi Matano. Connecting equilibria by blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 155-164. doi: 10.3934/dcds.2000.6.155

[8]

Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267

[9]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[10]

Min Zhu, Shuanghu Zhang. Blow-up of solutions to the periodic modified Camassa-Holm equation with varying linear dispersion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7235-7256. doi: 10.3934/dcds.2016115

[11]

Min Zhu, Ying Wang. Blow-up of solutions to the periodic generalized modified Camassa-Holm equation with varying linear dispersion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 645-661. doi: 10.3934/dcds.2017027

[12]

Vitali Liskevich, Igor I. Skrypnik. Pointwise estimates for solutions of singular quasi-linear parabolic equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1029-1042. doi: 10.3934/dcdss.2013.6.1029

[13]

Yu-Zhu Wang, Weibing Zuo. On the blow-up criterion of smooth solutions for Hall-magnetohydrodynamics system with partial viscosity. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1327-1336. doi: 10.3934/cpaa.2014.13.1327

[14]

Yūki Naito, Takasi Senba. Blow-up behavior of solutions to a parabolic-elliptic system on higher dimensional domains. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3691-3713. doi: 10.3934/dcds.2012.32.3691

[15]

Shu-Xiang Huang, Fu-Cai Li, Chun-Hong Xie. Global existence and blow-up of solutions to a nonlocal reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1519-1532. doi: 10.3934/dcds.2003.9.1519

[16]

Yongsheng Mi, Boling Guo, Chunlai Mu. Well-posedness and blow-up scenario for a new integrable four-component system with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2171-2191. doi: 10.3934/dcds.2016.36.2171

[17]

Vo Anh Khoa, Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms. Evolution Equations & Control Theory, 2019, 8 (2) : 359-395. doi: 10.3934/eect.2019019

[18]

Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 233-255. doi: 10.3934/dcdss.2020013

[19]

Jorge García-Melián, Julio D. Rossi, José C. Sabina de Lis. Elliptic systems with boundary blow-up: existence, uniqueness and applications to removability of singularities. Communications on Pure & Applied Analysis, 2016, 15 (2) : 549-562. doi: 10.3934/cpaa.2016.15.549

[20]

Priyanjana M. N. Dharmawardane. Decay property of regularity-loss type for quasi-linear hyperbolic systems of viscoelasticity. Conference Publications, 2013, 2013 (special) : 197-206. doi: 10.3934/proc.2013.2013.197

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]