October  2012, 32(10): 3525-3537. doi: 10.3934/dcds.2012.32.3525

Dimension and measure of baker-like skew-products of $\boldsymbol{\beta}$-transformations

1. 

Institute of Mathematics, Polish Academy of Sciences, ulica Śniadeckich 8, P.O. Box 21, 00-956 Warszawa, Poland, Poland

Received  March 2011 Revised  February 2012 Published  May 2012

We consider a generalisation of the baker's transformation, consisting of a skew-product of contractions and a $\beta$-transformation. The Hausdorff dimension and Lebesgue measure of the attractor is calculated for a set of parameters with positive measure. The proofs use a new transverality lemma similar to Solomyak's [12]. This transversality, which is applicable to the considered class of maps holds for a larger set of parameters than Solomyak's transversality.
Citation: David Färm, Tomas Persson. Dimension and measure of baker-like skew-products of $\boldsymbol{\beta}$-transformations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3525-3537. doi: 10.3934/dcds.2012.32.3525
References:
[1]

J. C. Alexander and J. A. Yorke, Fat baker's transformations,, Ergodic Theory & Dynamical Systems, 4 (1984), 1.   Google Scholar

[2]

G. Brown and Q. Yin, $\beta$-transformation, natural extension and invariant measure,, Ergodic Theory and Dynamical Systems, 20 (2000), 1271.  doi: 10.1017/S0143385700000699.  Google Scholar

[3]

P. Erdős, On a family of symmetric Bernoulli convolutions,, American Journal of Mathematics, 61 (1939), 974.  doi: 10.2307/2371641.  Google Scholar

[4]

K. Falconer, "Fractal Geometry. Mathematical Foundations and Applications,", Second edition, (2003).   Google Scholar

[5]

D. Kwon, The natural extensions of $\beta$-transformations which generalize baker's transformations,, Nonlinearity, 22 (2009), 301.  doi: 10.1088/0951-7715/22/2/004.  Google Scholar

[6]

W. Parry, On the $\beta$-expansion of real numbers,, Acta Mathematica Academiae Scientiarum Hungaricae, 11 (1960), 401.  doi: 10.1007/BF02020954.  Google Scholar

[7]

Y. Peres and B. Solomyak, Absolute continuity of Bernoulli convolutions, a simple proof,, Mathematical Research Letters, 3 (1996), 231.   Google Scholar

[8]

Ya. Pesin, Dynamical systems with generalized hyperbolic attractors: Hyperbolic, ergodic and topological properties,, Ergodic Theory and Dynamical Systems, 12 (1992), 123.  doi: 10.1017/S0143385700006635.  Google Scholar

[9]

A. Rényi, Representations for real numbers and their ergodic properties,, Acta Mathematica Academiae Scientiarum Hungaricae, 8 (1957), 477.   Google Scholar

[10]

E. Sataev, Ergodic properties of the Belykh map,, Journal of Mathematical Sciences, 95 (1999), 2564.  doi: 10.1007/BF02169056.  Google Scholar

[11]

J. Schmeling and S. Troubetzkoy, Dimension and invertibility of hyperbolic endomorphisms with singularities,, Ergodic Theory and Dynamical Systems, 18 (1998), 1257.  doi: 10.1017/S0143385798117996.  Google Scholar

[12]

B. Solomyak, On the random series $\sum \pm \lambda^n$ (an Erdős problem),, Annals of Mathematics (2), 142 (1995), 611.  doi: 10.2307/2118556.  Google Scholar

show all references

References:
[1]

J. C. Alexander and J. A. Yorke, Fat baker's transformations,, Ergodic Theory & Dynamical Systems, 4 (1984), 1.   Google Scholar

[2]

G. Brown and Q. Yin, $\beta$-transformation, natural extension and invariant measure,, Ergodic Theory and Dynamical Systems, 20 (2000), 1271.  doi: 10.1017/S0143385700000699.  Google Scholar

[3]

P. Erdős, On a family of symmetric Bernoulli convolutions,, American Journal of Mathematics, 61 (1939), 974.  doi: 10.2307/2371641.  Google Scholar

[4]

K. Falconer, "Fractal Geometry. Mathematical Foundations and Applications,", Second edition, (2003).   Google Scholar

[5]

D. Kwon, The natural extensions of $\beta$-transformations which generalize baker's transformations,, Nonlinearity, 22 (2009), 301.  doi: 10.1088/0951-7715/22/2/004.  Google Scholar

[6]

W. Parry, On the $\beta$-expansion of real numbers,, Acta Mathematica Academiae Scientiarum Hungaricae, 11 (1960), 401.  doi: 10.1007/BF02020954.  Google Scholar

[7]

Y. Peres and B. Solomyak, Absolute continuity of Bernoulli convolutions, a simple proof,, Mathematical Research Letters, 3 (1996), 231.   Google Scholar

[8]

Ya. Pesin, Dynamical systems with generalized hyperbolic attractors: Hyperbolic, ergodic and topological properties,, Ergodic Theory and Dynamical Systems, 12 (1992), 123.  doi: 10.1017/S0143385700006635.  Google Scholar

[9]

A. Rényi, Representations for real numbers and their ergodic properties,, Acta Mathematica Academiae Scientiarum Hungaricae, 8 (1957), 477.   Google Scholar

[10]

E. Sataev, Ergodic properties of the Belykh map,, Journal of Mathematical Sciences, 95 (1999), 2564.  doi: 10.1007/BF02169056.  Google Scholar

[11]

J. Schmeling and S. Troubetzkoy, Dimension and invertibility of hyperbolic endomorphisms with singularities,, Ergodic Theory and Dynamical Systems, 18 (1998), 1257.  doi: 10.1017/S0143385798117996.  Google Scholar

[12]

B. Solomyak, On the random series $\sum \pm \lambda^n$ (an Erdős problem),, Annals of Mathematics (2), 142 (1995), 611.  doi: 10.2307/2118556.  Google Scholar

[1]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[2]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[3]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[4]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[5]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[6]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[7]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[8]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[9]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]