Citation: |
[1] |
J. C. Alexander and J. A. Yorke, Fat baker's transformations, Ergodic Theory & Dynamical Systems, 4 (1984), 1-23. |
[2] |
G. Brown and Q. Yin, $\beta$-transformation, natural extension and invariant measure, Ergodic Theory and Dynamical Systems, 20 (2000), 1271-1285.doi: 10.1017/S0143385700000699. |
[3] |
P. Erdős, On a family of symmetric Bernoulli convolutions, American Journal of Mathematics, 61 (1939), 974-976.doi: 10.2307/2371641. |
[4] |
K. Falconer, "Fractal Geometry. Mathematical Foundations and Applications," Second edition, John Wiley & Sons, Inc., Hoboken, NJ, 2003. |
[5] |
D. Kwon, The natural extensions of $\beta$-transformations which generalize baker's transformations, Nonlinearity, 22 (2009), 301-310.doi: 10.1088/0951-7715/22/2/004. |
[6] |
W. Parry, On the $\beta$-expansion of real numbers, Acta Mathematica Academiae Scientiarum Hungaricae, 11 (1960), 401-416.doi: 10.1007/BF02020954. |
[7] |
Y. Peres and B. Solomyak, Absolute continuity of Bernoulli convolutions, a simple proof, Mathematical Research Letters, 3 (1996), 231-239. |
[8] |
Ya. Pesin, Dynamical systems with generalized hyperbolic attractors: Hyperbolic, ergodic and topological properties, Ergodic Theory and Dynamical Systems, 12 (1992), 123-151.doi: 10.1017/S0143385700006635. |
[9] |
A. Rényi, Representations for real numbers and their ergodic properties, Acta Mathematica Academiae Scientiarum Hungaricae, 8 (1957), 477-493. |
[10] |
E. Sataev, Ergodic properties of the Belykh map, Journal of Mathematical Sciences, 95 (1999), 2564-2575.doi: 10.1007/BF02169056. |
[11] |
J. Schmeling and S. Troubetzkoy, Dimension and invertibility of hyperbolic endomorphisms with singularities, Ergodic Theory and Dynamical Systems, 18 (1998), 1257-1282.doi: 10.1017/S0143385798117996. |
[12] |
B. Solomyak, On the random series $\sum \pm \lambda^n$ (an Erdős problem), Annals of Mathematics (2), 142 (1995), 611-625.doi: 10.2307/2118556. |