October  2012, 32(10): 3525-3537. doi: 10.3934/dcds.2012.32.3525

Dimension and measure of baker-like skew-products of $\boldsymbol{\beta}$-transformations

1. 

Institute of Mathematics, Polish Academy of Sciences, ulica Śniadeckich 8, P.O. Box 21, 00-956 Warszawa, Poland, Poland

Received  March 2011 Revised  February 2012 Published  May 2012

We consider a generalisation of the baker's transformation, consisting of a skew-product of contractions and a $\beta$-transformation. The Hausdorff dimension and Lebesgue measure of the attractor is calculated for a set of parameters with positive measure. The proofs use a new transverality lemma similar to Solomyak's [12]. This transversality, which is applicable to the considered class of maps holds for a larger set of parameters than Solomyak's transversality.
Citation: David Färm, Tomas Persson. Dimension and measure of baker-like skew-products of $\boldsymbol{\beta}$-transformations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3525-3537. doi: 10.3934/dcds.2012.32.3525
References:
[1]

J. C. Alexander and J. A. Yorke, Fat baker's transformations,, Ergodic Theory & Dynamical Systems, 4 (1984), 1.   Google Scholar

[2]

G. Brown and Q. Yin, $\beta$-transformation, natural extension and invariant measure,, Ergodic Theory and Dynamical Systems, 20 (2000), 1271.  doi: 10.1017/S0143385700000699.  Google Scholar

[3]

P. Erdős, On a family of symmetric Bernoulli convolutions,, American Journal of Mathematics, 61 (1939), 974.  doi: 10.2307/2371641.  Google Scholar

[4]

K. Falconer, "Fractal Geometry. Mathematical Foundations and Applications,", Second edition, (2003).   Google Scholar

[5]

D. Kwon, The natural extensions of $\beta$-transformations which generalize baker's transformations,, Nonlinearity, 22 (2009), 301.  doi: 10.1088/0951-7715/22/2/004.  Google Scholar

[6]

W. Parry, On the $\beta$-expansion of real numbers,, Acta Mathematica Academiae Scientiarum Hungaricae, 11 (1960), 401.  doi: 10.1007/BF02020954.  Google Scholar

[7]

Y. Peres and B. Solomyak, Absolute continuity of Bernoulli convolutions, a simple proof,, Mathematical Research Letters, 3 (1996), 231.   Google Scholar

[8]

Ya. Pesin, Dynamical systems with generalized hyperbolic attractors: Hyperbolic, ergodic and topological properties,, Ergodic Theory and Dynamical Systems, 12 (1992), 123.  doi: 10.1017/S0143385700006635.  Google Scholar

[9]

A. Rényi, Representations for real numbers and their ergodic properties,, Acta Mathematica Academiae Scientiarum Hungaricae, 8 (1957), 477.   Google Scholar

[10]

E. Sataev, Ergodic properties of the Belykh map,, Journal of Mathematical Sciences, 95 (1999), 2564.  doi: 10.1007/BF02169056.  Google Scholar

[11]

J. Schmeling and S. Troubetzkoy, Dimension and invertibility of hyperbolic endomorphisms with singularities,, Ergodic Theory and Dynamical Systems, 18 (1998), 1257.  doi: 10.1017/S0143385798117996.  Google Scholar

[12]

B. Solomyak, On the random series $\sum \pm \lambda^n$ (an Erdős problem),, Annals of Mathematics (2), 142 (1995), 611.  doi: 10.2307/2118556.  Google Scholar

show all references

References:
[1]

J. C. Alexander and J. A. Yorke, Fat baker's transformations,, Ergodic Theory & Dynamical Systems, 4 (1984), 1.   Google Scholar

[2]

G. Brown and Q. Yin, $\beta$-transformation, natural extension and invariant measure,, Ergodic Theory and Dynamical Systems, 20 (2000), 1271.  doi: 10.1017/S0143385700000699.  Google Scholar

[3]

P. Erdős, On a family of symmetric Bernoulli convolutions,, American Journal of Mathematics, 61 (1939), 974.  doi: 10.2307/2371641.  Google Scholar

[4]

K. Falconer, "Fractal Geometry. Mathematical Foundations and Applications,", Second edition, (2003).   Google Scholar

[5]

D. Kwon, The natural extensions of $\beta$-transformations which generalize baker's transformations,, Nonlinearity, 22 (2009), 301.  doi: 10.1088/0951-7715/22/2/004.  Google Scholar

[6]

W. Parry, On the $\beta$-expansion of real numbers,, Acta Mathematica Academiae Scientiarum Hungaricae, 11 (1960), 401.  doi: 10.1007/BF02020954.  Google Scholar

[7]

Y. Peres and B. Solomyak, Absolute continuity of Bernoulli convolutions, a simple proof,, Mathematical Research Letters, 3 (1996), 231.   Google Scholar

[8]

Ya. Pesin, Dynamical systems with generalized hyperbolic attractors: Hyperbolic, ergodic and topological properties,, Ergodic Theory and Dynamical Systems, 12 (1992), 123.  doi: 10.1017/S0143385700006635.  Google Scholar

[9]

A. Rényi, Representations for real numbers and their ergodic properties,, Acta Mathematica Academiae Scientiarum Hungaricae, 8 (1957), 477.   Google Scholar

[10]

E. Sataev, Ergodic properties of the Belykh map,, Journal of Mathematical Sciences, 95 (1999), 2564.  doi: 10.1007/BF02169056.  Google Scholar

[11]

J. Schmeling and S. Troubetzkoy, Dimension and invertibility of hyperbolic endomorphisms with singularities,, Ergodic Theory and Dynamical Systems, 18 (1998), 1257.  doi: 10.1017/S0143385798117996.  Google Scholar

[12]

B. Solomyak, On the random series $\sum \pm \lambda^n$ (an Erdős problem),, Annals of Mathematics (2), 142 (1995), 611.  doi: 10.2307/2118556.  Google Scholar

[1]

Lyndsey Clark. The $\beta$-transformation with a hole. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1249-1269. doi: 10.3934/dcds.2016.36.1249

[2]

Luis Barreira. Dimension theory of flows: A survey. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3345-3362. doi: 10.3934/dcdsb.2015.20.3345

[3]

Luis Barreira, César Silva. Lyapunov exponents for continuous transformations and dimension theory. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 469-490. doi: 10.3934/dcds.2005.13.469

[4]

Bing Li, Tuomas Sahlsten, Tony Samuel. Intermediate $\beta$-shifts of finite type. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 323-344. doi: 10.3934/dcds.2016.36.323

[5]

Marc Chamberland, Victor H. Moll. Dynamics of the degree six Landen transformation. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 905-919. doi: 10.3934/dcds.2006.15.905

[6]

Oğul Esen, Partha Guha. On the geometry of the Schmidt-Legendre transformation. Journal of Geometric Mechanics, 2018, 10 (3) : 251-291. doi: 10.3934/jgm.2018010

[7]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[8]

Mustafa A. H. Al-Jaboori, D. Wirosoetisno. Navier--Stokes equations on the $\beta$-plane. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 687-701. doi: 10.3934/dcdsb.2011.16.687

[9]

Bo Tan, Bao-Wei Wang, Jun Wu, Jian Xu. Localized Birkhoff average in beta dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2547-2564. doi: 10.3934/dcds.2013.33.2547

[10]

Alfonso Sorrentino. Computing Mather's $\beta$-function for Birkhoff billiards. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5055-5082. doi: 10.3934/dcds.2015.35.5055

[11]

Élise Janvresse, Benoît Rittaud, Thierry de la Rue. Dynamics of $\lambda$-continued fractions and $\beta$-shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1477-1498. doi: 10.3934/dcds.2013.33.1477

[12]

Sze-Bi Hsu, Bernold Fiedler, Hsiu-Hau Lin. Classification of potential flows under renormalization group transformation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 437-446. doi: 10.3934/dcdsb.2016.21.437

[13]

N. Kamran, K. Tenenblat. Periodic systems for the higher-dimensional Laplace transformation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 359-378. doi: 10.3934/dcds.1998.4.359

[14]

Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433

[15]

E. García-Toraño Andrés, Bavo Langerock, Frans Cantrijn. Aspects of reduction and transformation of Lagrangian systems with symmetry. Journal of Geometric Mechanics, 2014, 6 (1) : 1-23. doi: 10.3934/jgm.2014.6.1

[16]

Andrey Kochergin. A Besicovitch cylindrical transformation with Hölder function. Electronic Research Announcements, 2015, 22: 87-91. doi: 10.3934/era.2015.22.87

[17]

Xian Chen, Zhi-Ming Ma. A transformation of Markov jump processes and applications in genetic study. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5061-5084. doi: 10.3934/dcds.2014.34.5061

[18]

Hong-Gunn Chew, Cheng-Chew Lim. On regularisation parameter transformation of support vector machines. Journal of Industrial & Management Optimization, 2009, 5 (2) : 403-415. doi: 10.3934/jimo.2009.5.403

[19]

Hongyu Liu, Ting Zhou. Two dimensional invisibility cloaking via transformation optics. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 525-543. doi: 10.3934/dcds.2011.31.525

[20]

Jiaoyan Wang, Jianzhong Su, Humberto Perez Gonzalez, Jonathan Rubin. A reliability study of square wave bursting $\beta$-cells with noise. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 569-588. doi: 10.3934/dcdsb.2011.16.569

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]