\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Perturbed elliptic equations with oscillatory nonlinearities

Abstract Related Papers Cited by
  • In this paper, arbitrarily many solutions, in particular arbitrarily many nodal solutions, are proved to exist for perturbed elliptic equations of the form \begin{equation*}\label{} \left\{ \begin{array}{ll} \displaystyle -\Delta_p u+|u|^{p-2}u = Q(x)(f(u)+\varepsilon g(u)),\ \ \ x\in \mathbb R^N, \\ u\in W^{1,p}(\mathbb R^N), \end{array} \right. (P_\varepsilon) \end{equation*} where $\Delta_p$ is the $p$-Laplacian operator defined by $\Delta_p u=\text{div}(|\nabla u|^{p-2}\nabla u)$, $p>1$, $Q\in \mathcal{C}(\mathbb R^N,\mathbb R)$ is a positive function, $f\in\mathcal{C}(\mathbb R, \mathbb R)$ oscillates either near the origin or near the infinity, and $\epsilon$ is a real number. For $g$ it is only required that $g\in\mathcal{C}(\mathbb R, \mathbb R)$. Under appropriate assumptions on $Q$ and $f$ the following results which are special cases of more general ones are proved: the unperturbed problem $(P_0)$ has infinitely many nodal solutions, and for any $n\in\mathbb N$ the perturbed problem $(P_\varepsilon)$ has at least $n$ nodal solutions provided that $|\epsilon|$ is sufficiently small.
    Mathematics Subject Classification: 35J20, 35J65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Anello and G. Cordaro, Perturbation from Dirichlet problem involving oscillating nonlinearities, J. Differential Equations, 234 (2007), 80-90.doi: 10.1016/j.jde.2006.11.011.

    [2]

    T. Bartsch, K.-C. Chang and Z.-Q. Wang, On the Morse indices of sign changing solutions of nonlinear elliptic problems, Math. Z., 233 (2000), 655-677.doi: 10.1007/s002090050492.

    [3]

    T. Bartsch and Z. Liu, Location and critical groups of critical points in Banach spaces with an application to nonlinear eigenvalue problems, Adv. Differential Equations, 9 (2004), 645-676.

    [4]

    T. Bartsch and Z. Liu, Multiple sign changing solutions of a quasilinear elliptic eigenvalue problem involving the $p$-Laplacian, Commun. Contemp. Math., 6 (2004), 245-258.

    [5]

    T. Bartsch and Z. Liu, On a superlinear elliptic $p$-Laplacian equation, J. Differential Equations, 198 (2004), 149-175.doi: 10.1016/j.jde.2003.08.001.

    [6]

    T. Bartsch, Z. Liu and T. Weth, Nodal solutions of a $p$-Laplacian equation, Proc. London Math. Soc. (3), 91 (2005), 129-152.doi: 10.1112/S0024611504015187.

    [7]

    S. Chen and S. Li, Splitting lemma at infinity and a strongly resonant problem with periodic nonlinearity, Calc. Var. Partial Differential Equations, 27 (2006), 105-123.doi: 10.1007/s00526-006-0025-1.

    [8]

    L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and montonicity results, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 493-516.doi: 10.1016/S0294-1449(98)80032-2.

    [9]

    P. Habets, E. Serra and M. Tarallo, Multiplicity results for boundary value problems with potentials oscillating around resonance, J. Differential Equations, 138 (1997), 133-156.doi: 10.1006/jdeq.1997.3267.

    [10]

    A. Kristály, Detection of arbitrarily many solutions for perturbed elliptic problems involving oscillatory terms, J. Differential Equations, 245 (2008), 3849-3868.doi: 10.1016/j.jde.2008.05.014.

    [11]

    S. Li and Z. Liu, Perturbations from symmeric elliptic boundary value problems, J. Differential Equations, 185 (2002), 271-280.doi: 10.1006/jdeq.2001.4160.

    [12]

    Y. Li, Z. Liu and C. Zhao, Nodal solutions of a perturbed elliptic problem, Topol. Methods Nonlinear Anal., 32 (2008), 49-68.

    [13]

    P. Omari and F. Zanolin, Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential, Comm. Partial Differential Equations, 21 (1996), 721-733.doi: 10.1080/03605309608821205.

    [14]

    J. Saint Raymond, On the multiplicity of the solutions of equations $-\Delta u=\lambda f(u)$, J. Differential Equations, 180 (2002), 65-88.doi: 10.1006/jdeq.2001.4057.

    [15]

    R. Schaaf and K. Schmitt, A class of nonlinear Sturm-Liouville problems with infinitely many solutions, Trans. Amer. Math. Soc., 306 (1988), 853-859.doi: 10.1090/S0002-9947-1988-0933322-5.

    [16]

    P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150.doi: 10.1016/0022-0396(84)90105-0.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(60) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return