October  2012, 32(10): 3651-3664. doi: 10.3934/dcds.2012.32.3651

Cone-fields without constant orbit core dimension

1. 

Jagiellonian University, Faculty of Mathematics and Computer Science, Łojasiewicza 6, 30-348 Kraków, Poland, Poland, Poland

Received  May 2011 Revised  August 2012 Published  May 2012

As is well-known, the existence of a cone-field with constant orbit core dimension is, roughly speaking, equivalent to hyperbolicity, and consequently guarantees expansivity and shadowing. In this paper we study the case when the given cone-field does not have the constant orbit core dimension. It occurs that we still obtain expansivity even in general metric spaces.
Main Result. Let $X$ be a metric space and let $f:X \rightharpoonup X$ be a given partial map. If there exists a uniform cone-field on $X$ such that $f$ is cone-hyperbolic, then $f$ is uniformly expansive, i.e. there exists $N \in \mathbb{N}$, $\lambda \in [0,1)$ and $\epsilon > 0$ such that for all orbits $\mathrm{x},\mathrm{v}:{-N,\ldots,N} \to X$ \[ d_{\sup}(\mathrm{x},\mathrm{v}) \leq \epsilon \Longrightarrow d(\mathrm{x}_0,\mathrm{v}_0) \leq \lambda d_{\sup}(\mathrm{x},\mathrm{v}). \] } We also show a simple example of a cone hyperbolic orbit in $\mathbb{R}^3$ which does not have the shadowing property.
Citation: Łukasz Struski, Jacek Tabor, Tomasz Kułaga. Cone-fields without constant orbit core dimension. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3651-3664. doi: 10.3934/dcds.2012.32.3651
References:
[1]

P. Diamond, P. Kloeden, V. Kozyakin and A. Pokrovskii, Semihyperbolic mappings,, Journal of Nonlinear Science, 5 (1995), 419.   Google Scholar

[2]

M. J. Capiński and P. Zgliczyński, Cone conditions and covering relations for topologically normally hyperbolic invariant manifolds,, Discrete and Continuous Dynamical Systems, 30 (2011), 641.  doi: 10.3934/dcds.2011.30.641.  Google Scholar

[3]

S. Hruska, A numerical method for constructing the hyperbolic structure of comple Hénon mappings,, Found. Comput. Math., 6 (2006), 427.   Google Scholar

[4]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", With a supplementary chapter by Katok and Leonardo Mendoza, 54 (1995).   Google Scholar

[5]

T. Kułaga and J. Tabor, Hyperbolic dynamics in graph-directed IFS, 2010., Available from: \url{http://www2.im.uj.edu.pl/badania/preprinty/imuj2010/pr1009.pdf}., ().   Google Scholar

[6]

J. Lewowicz, Lyapunov functions and topological stability,, Journal of Differential Equations, 38 (1980), 192.  doi: 10.1016/0022-0396(80)90004-2.  Google Scholar

[7]

J. Lewowicz, Persistence of semi-trajectories,, Journal of Dynamics and Differential Equation, 18 (2006), 1095.  doi: 10.1007/s10884-006-9047-9.  Google Scholar

[8]

S. Newhouse, Cone-fields, domination, and hyperbolicity,, in, (2004), 419.   Google Scholar

show all references

References:
[1]

P. Diamond, P. Kloeden, V. Kozyakin and A. Pokrovskii, Semihyperbolic mappings,, Journal of Nonlinear Science, 5 (1995), 419.   Google Scholar

[2]

M. J. Capiński and P. Zgliczyński, Cone conditions and covering relations for topologically normally hyperbolic invariant manifolds,, Discrete and Continuous Dynamical Systems, 30 (2011), 641.  doi: 10.3934/dcds.2011.30.641.  Google Scholar

[3]

S. Hruska, A numerical method for constructing the hyperbolic structure of comple Hénon mappings,, Found. Comput. Math., 6 (2006), 427.   Google Scholar

[4]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", With a supplementary chapter by Katok and Leonardo Mendoza, 54 (1995).   Google Scholar

[5]

T. Kułaga and J. Tabor, Hyperbolic dynamics in graph-directed IFS, 2010., Available from: \url{http://www2.im.uj.edu.pl/badania/preprinty/imuj2010/pr1009.pdf}., ().   Google Scholar

[6]

J. Lewowicz, Lyapunov functions and topological stability,, Journal of Differential Equations, 38 (1980), 192.  doi: 10.1016/0022-0396(80)90004-2.  Google Scholar

[7]

J. Lewowicz, Persistence of semi-trajectories,, Journal of Dynamics and Differential Equation, 18 (2006), 1095.  doi: 10.1007/s10884-006-9047-9.  Google Scholar

[8]

S. Newhouse, Cone-fields, domination, and hyperbolicity,, in, (2004), 419.   Google Scholar

[1]

Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317

[2]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[3]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012

[4]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[5]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[6]

Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281

[7]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[8]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[9]

Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020375

[10]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[11]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

[12]

Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020366

[13]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[14]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[15]

Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial & Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009

[16]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[17]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[18]

Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2020033

[19]

Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158

[20]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]