October  2012, 32(10): 3665-3690. doi: 10.3934/dcds.2012.32.3665

Averaging of an homogeneous two-phase flow model with oscillating external forces

1. 

Department of Mathematics, Florida International University, DM413B, University Park, Miami, Florida 33199, United States

Received  April 2011 Revised  March 2012 Published  May 2012

In this article, we consider a non-autonomous diffuse interface model for an isothermal incompressible two-phase flow in a two-dimensional bounded domain. We assume that the external force is singularly oscillating and depends on a small parameter $ \epsilon. $ We prove the existence of the uniform global attractor $A^{\epsilon}. $ Furthermore, using the method of [13] in the case of the two-dimensional Navier-Stokes systems, we study the convergence of $A^{\epsilon} $ as $ \epsilon $ goes to zero. Let us mention that the nonlinearity involved in the model considered in this article is slightly stronger than the one in the two-dimensional Navier-Stokes system studied in [13].
Citation: T. Tachim Medjo. Averaging of an homogeneous two-phase flow model with oscillating external forces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3665-3690. doi: 10.3934/dcds.2012.32.3665
References:
[1]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," Studies in Mathematics and its Applications, 25,, North-Holland Publishing Co., (1992).   Google Scholar

[2]

C. Bernier, Existence of attractor for the quasi-geostrophic approximation of the Navier-Stokes equations and estimate of its dimension,, Adv. Math. Sci. Appl., 4 (1994), 465.   Google Scholar

[3]

T. Blesgen, A generalization of the Navier-Stokes equation to two-phase flow,, Pysica D (Applied Physics), 32 (1999), 1119.  doi: 10.1088/0022-3727/32/10/307.  Google Scholar

[4]

G. Caginalp, An analysis of a phase field model of a free boundary,, Arch. Rational Mech. Anal., 92 (1986), 205.   Google Scholar

[5]

C. Cao and E. S. Titi, Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model,, Comm. Pure Appl. Math., 56 (2003), 198.  doi: 10.1002/cpa.10056.  Google Scholar

[6]

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics,, Ann. of Math. (2), 166 (2007), 245.  doi: 10.4007/annals.2007.166.245.  Google Scholar

[7]

T. Caraballo and P. E. Kloeden, Non-autonomous attractor for integro-differential evolution equations,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 17.   Google Scholar

[8]

T. Caraballo and J. Real, Asymptotic behavior of two-dimensional Navier-Stokes equations with delays,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181.  doi: 10.1098/rspa.2003.1166.  Google Scholar

[9]

T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays,, J. Differential Equations, 205 (2004), 271.  doi: 10.1016/j.jde.2004.04.012.  Google Scholar

[10]

V. V. Chepyzhov and M. I. Vishik, Averaging of trajectory attractors of evolution equations with rapidly oscillating coefficients, International Conference on Differential and Functional Differential Equations (Moscow, 1999),, Funct. Differ. Equ., 8 (2001), 123.   Google Scholar

[11]

V. V. Chepyzhov and M. I. Vishik, Averaging of trajectory attractors of evolution equations with rapidly oscillating terms,, Sb. Math., 192 (2001), 11.  doi: 10.1070/SM2001v192n01ABEH000534.  Google Scholar

[12]

V. V. Chepyzhov, V. Pata and M. I. Vishik, Averaging of nonautonomous damped wave equations with singularly oscillating external forces,, J. Math. Pures Appl. (9), 90 (2008), 469.   Google Scholar

[13]

V. V. Chepyzhov, V. Pata and M. I. Vishik, Averaging of 2D Navier-Stokes equations with singularly oscillating forces,, Nonlinearity, 22 (2009), 351.  doi: 10.1088/0951-7715/22/2/006.  Google Scholar

[14]

V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics," American Mathematical Society Colloquium Publications, 49,, American Mathematical Society, (2002).   Google Scholar

[15]

V. V. Chepyzhov and M. I. Vishik, Non-autonomous 2D Navier-Stokes system with singularly oscillating external force and its global attractor,, J. Dynam. Differential Equations, 19 (2007), 655.  doi: 10.1007/s10884-007-9077-y.  Google Scholar

[16]

V. V. Chepyzhov, M. I. Vishik and W. L. Wendland, On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging,, Discrete Contin. Dyn. Syst., 12 (2005), 27.   Google Scholar

[17]

A. Cheskidov and S. Lu, The existence and the structure of uniform global attractors for nonautonomous reaction-diffusion systems without uniqueness,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 55.   Google Scholar

[18]

H. Crauel, A. Debussche and F. Flandoli, Random attractors,, J. Dyn. Differential Equations, 2 (1995), 307.   Google Scholar

[19]

E. Feireisl, H. Petzeltová, E. Rocca and G. Schimperna, Analysis of a phase-flow model for two-phase compressible fluids,, Math. Models Methods Appli. Sci., ().   Google Scholar

[20]

C. G. Gal and M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 401.  doi: 10.1016/j.anihpc.2009.11.013.  Google Scholar

[21]

C. G. Gal and M. Grasselli, Longtime behavior for a model of homogeneous incompressible two-phase flows,, Discrete Contin. Dyn. Syst., 28 (2010), 1.   Google Scholar

[22]

C. G. Gal and M. Grasselli, Trajectory attractors for binary fluid mixtures in 3D,, Chin. Ann. Math. Ser. B, 31 (2010), 655.  doi: 10.1007/s11401-010-0603-6.  Google Scholar

[23]

A. Haraux, "Systèmes Dynamiques Dissipatifs et Applications," Recherches en Mathématiques Appliquées, 17,, Mason, (1991).   Google Scholar

[24]

N. Ju, The global attractor for the solutions to the 3D viscous primitive equations,, Discrete Contin. Dyn. Syst., 17 (2007), 159.  doi: 10.3934/dcds.2007.17.159.  Google Scholar

[25]

P. E. Kloeden and B. Schmalfuß, Nonautonomous systems, cocycle attractors and variable time-step discretization,, Numer. Algorithms, 14 (1997), 141.  doi: 10.1023/A:1019156812251.  Google Scholar

[26]

P. E. Kloeden and D. J. Stonier, Cocycle attractors in nonautonomously perturbed differential equations,, Dyn. Continuous Impulsive Systems, 4 (1998), 211.   Google Scholar

[27]

J. L. Lions, R. Temam and S. Wang, New formulations of the primitive equations of the atmosphere and applications,, Nonlinearity, 5 (1992), 237.   Google Scholar

[28]

J. L. Lions, R. Temam and S. Wang, On the equations of large-scale ocean,, Nonlinearity, 5 (1992), 1007.   Google Scholar

[29]

S. Lu, Attractors for nonautonomous 2D Navier-Stokes equations with less regular normal forces,, J. Differential Equations, 230 (2006), 196.  doi: 10.1016/j.jde.2006.07.009.  Google Scholar

[30]

S. Lu, H. Wu and C. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces,, Discrete Contin. Dyn. Syst., 13 (2005), 701.  doi: 10.3934/dcds.2005.13.701.  Google Scholar

[31]

T. Tachim Medjo, Non-autonomous planetary 3D geostrophic equations with oscillating external force and its global attractor,, Nonlinear Anal. Real World Appl., 12 (2011), 1437.  doi: 10.1016/j.nonrwa.2010.10.004.  Google Scholar

[32]

R. Samelson, R. Temam and S. Wang, Some mathematical properties of the planetary geostrophic equations for large-scale ocean circulation,, Appl. Anal., 70 (1998), 147.  doi: 10.1080/00036819808840682.  Google Scholar

[33]

H. Song, S. Ma and C. Zhong, Attractors of non-autonomous reaction-diffusion equations,, Nonlinearity, 22 (2009), 667.  doi: 10.1088/0951-7715/22/3/008.  Google Scholar

[34]

R. Temam, "Infinite Dimensional Dynamical Systems in Mechanics and Physics," Vol. 68, Second edition,, Appl. Math. Sci., (1988).   Google Scholar

[35]

R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis,", AMS-Chelsea Series, (2001).   Google Scholar

[36]

Y. Wang and C. Zhong, On the existence of pullback attractors for non-autonomous reaction-diffusion equations,, Dyn. Syst., 23 (2008), 1.   Google Scholar

show all references

References:
[1]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," Studies in Mathematics and its Applications, 25,, North-Holland Publishing Co., (1992).   Google Scholar

[2]

C. Bernier, Existence of attractor for the quasi-geostrophic approximation of the Navier-Stokes equations and estimate of its dimension,, Adv. Math. Sci. Appl., 4 (1994), 465.   Google Scholar

[3]

T. Blesgen, A generalization of the Navier-Stokes equation to two-phase flow,, Pysica D (Applied Physics), 32 (1999), 1119.  doi: 10.1088/0022-3727/32/10/307.  Google Scholar

[4]

G. Caginalp, An analysis of a phase field model of a free boundary,, Arch. Rational Mech. Anal., 92 (1986), 205.   Google Scholar

[5]

C. Cao and E. S. Titi, Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model,, Comm. Pure Appl. Math., 56 (2003), 198.  doi: 10.1002/cpa.10056.  Google Scholar

[6]

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics,, Ann. of Math. (2), 166 (2007), 245.  doi: 10.4007/annals.2007.166.245.  Google Scholar

[7]

T. Caraballo and P. E. Kloeden, Non-autonomous attractor for integro-differential evolution equations,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 17.   Google Scholar

[8]

T. Caraballo and J. Real, Asymptotic behavior of two-dimensional Navier-Stokes equations with delays,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181.  doi: 10.1098/rspa.2003.1166.  Google Scholar

[9]

T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays,, J. Differential Equations, 205 (2004), 271.  doi: 10.1016/j.jde.2004.04.012.  Google Scholar

[10]

V. V. Chepyzhov and M. I. Vishik, Averaging of trajectory attractors of evolution equations with rapidly oscillating coefficients, International Conference on Differential and Functional Differential Equations (Moscow, 1999),, Funct. Differ. Equ., 8 (2001), 123.   Google Scholar

[11]

V. V. Chepyzhov and M. I. Vishik, Averaging of trajectory attractors of evolution equations with rapidly oscillating terms,, Sb. Math., 192 (2001), 11.  doi: 10.1070/SM2001v192n01ABEH000534.  Google Scholar

[12]

V. V. Chepyzhov, V. Pata and M. I. Vishik, Averaging of nonautonomous damped wave equations with singularly oscillating external forces,, J. Math. Pures Appl. (9), 90 (2008), 469.   Google Scholar

[13]

V. V. Chepyzhov, V. Pata and M. I. Vishik, Averaging of 2D Navier-Stokes equations with singularly oscillating forces,, Nonlinearity, 22 (2009), 351.  doi: 10.1088/0951-7715/22/2/006.  Google Scholar

[14]

V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics," American Mathematical Society Colloquium Publications, 49,, American Mathematical Society, (2002).   Google Scholar

[15]

V. V. Chepyzhov and M. I. Vishik, Non-autonomous 2D Navier-Stokes system with singularly oscillating external force and its global attractor,, J. Dynam. Differential Equations, 19 (2007), 655.  doi: 10.1007/s10884-007-9077-y.  Google Scholar

[16]

V. V. Chepyzhov, M. I. Vishik and W. L. Wendland, On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging,, Discrete Contin. Dyn. Syst., 12 (2005), 27.   Google Scholar

[17]

A. Cheskidov and S. Lu, The existence and the structure of uniform global attractors for nonautonomous reaction-diffusion systems without uniqueness,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 55.   Google Scholar

[18]

H. Crauel, A. Debussche and F. Flandoli, Random attractors,, J. Dyn. Differential Equations, 2 (1995), 307.   Google Scholar

[19]

E. Feireisl, H. Petzeltová, E. Rocca and G. Schimperna, Analysis of a phase-flow model for two-phase compressible fluids,, Math. Models Methods Appli. Sci., ().   Google Scholar

[20]

C. G. Gal and M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 401.  doi: 10.1016/j.anihpc.2009.11.013.  Google Scholar

[21]

C. G. Gal and M. Grasselli, Longtime behavior for a model of homogeneous incompressible two-phase flows,, Discrete Contin. Dyn. Syst., 28 (2010), 1.   Google Scholar

[22]

C. G. Gal and M. Grasselli, Trajectory attractors for binary fluid mixtures in 3D,, Chin. Ann. Math. Ser. B, 31 (2010), 655.  doi: 10.1007/s11401-010-0603-6.  Google Scholar

[23]

A. Haraux, "Systèmes Dynamiques Dissipatifs et Applications," Recherches en Mathématiques Appliquées, 17,, Mason, (1991).   Google Scholar

[24]

N. Ju, The global attractor for the solutions to the 3D viscous primitive equations,, Discrete Contin. Dyn. Syst., 17 (2007), 159.  doi: 10.3934/dcds.2007.17.159.  Google Scholar

[25]

P. E. Kloeden and B. Schmalfuß, Nonautonomous systems, cocycle attractors and variable time-step discretization,, Numer. Algorithms, 14 (1997), 141.  doi: 10.1023/A:1019156812251.  Google Scholar

[26]

P. E. Kloeden and D. J. Stonier, Cocycle attractors in nonautonomously perturbed differential equations,, Dyn. Continuous Impulsive Systems, 4 (1998), 211.   Google Scholar

[27]

J. L. Lions, R. Temam and S. Wang, New formulations of the primitive equations of the atmosphere and applications,, Nonlinearity, 5 (1992), 237.   Google Scholar

[28]

J. L. Lions, R. Temam and S. Wang, On the equations of large-scale ocean,, Nonlinearity, 5 (1992), 1007.   Google Scholar

[29]

S. Lu, Attractors for nonautonomous 2D Navier-Stokes equations with less regular normal forces,, J. Differential Equations, 230 (2006), 196.  doi: 10.1016/j.jde.2006.07.009.  Google Scholar

[30]

S. Lu, H. Wu and C. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces,, Discrete Contin. Dyn. Syst., 13 (2005), 701.  doi: 10.3934/dcds.2005.13.701.  Google Scholar

[31]

T. Tachim Medjo, Non-autonomous planetary 3D geostrophic equations with oscillating external force and its global attractor,, Nonlinear Anal. Real World Appl., 12 (2011), 1437.  doi: 10.1016/j.nonrwa.2010.10.004.  Google Scholar

[32]

R. Samelson, R. Temam and S. Wang, Some mathematical properties of the planetary geostrophic equations for large-scale ocean circulation,, Appl. Anal., 70 (1998), 147.  doi: 10.1080/00036819808840682.  Google Scholar

[33]

H. Song, S. Ma and C. Zhong, Attractors of non-autonomous reaction-diffusion equations,, Nonlinearity, 22 (2009), 667.  doi: 10.1088/0951-7715/22/3/008.  Google Scholar

[34]

R. Temam, "Infinite Dimensional Dynamical Systems in Mechanics and Physics," Vol. 68, Second edition,, Appl. Math. Sci., (1988).   Google Scholar

[35]

R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis,", AMS-Chelsea Series, (2001).   Google Scholar

[36]

Y. Wang and C. Zhong, On the existence of pullback attractors for non-autonomous reaction-diffusion equations,, Dyn. Syst., 23 (2008), 1.   Google Scholar

[1]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[2]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[3]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[4]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[5]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[6]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[7]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[8]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[9]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[10]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[11]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[12]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[13]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[14]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[15]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[16]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[17]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[18]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[19]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[20]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]