October  2012, 32(10): 3691-3713. doi: 10.3934/dcds.2012.32.3691

Blow-up behavior of solutions to a parabolic-elliptic system on higher dimensional domains

1. 

Department of Mathematics, Faculty of Sciences, Ehime University, Matsuyama, 790-8577

2. 

Department of Mathematics, Kyushu Institute of Technology, Sensuicho, Tobata, Kitakyushu 804-8550, Japan

Received  May 2011 Revised  March 2012 Published  May 2012

We consider a parabolic-elliptic system of equations that arises in modelling the chemotaxis in bacteria and the evolution of self-attracting clusters. In the case space dimension $3 \leq N \leq 9$, we will derive criteria of the blow-up rate of solutions, and identify an explicit class of initial data for which the blow-up is of self-similar rate. Our argument is based on the study of the asymptotic properties of backward self-similar solutions to the system together with the intersection comparison principle.
Citation: Yūki Naito, Takasi Senba. Blow-up behavior of solutions to a parabolic-elliptic system on higher dimensional domains. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3691-3713. doi: 10.3934/dcds.2012.32.3691
References:
[1]

S. Angenent, The zero set of a solution of a parabolic equation,, J. Reine Angew. Math., 390 (1988), 79. Google Scholar

[2]

J. Bebernes and D. Eberly, A description of self-similar blow-up for dimensions $n \geq 3$,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 1. Google Scholar

[3]

P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles. III,, Colloq. Math., 68 (1995), 229. Google Scholar

[4]

P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles. I,, Colloq. Math., 66 (1994), 319. Google Scholar

[5]

P. Biler and T. Nadzieja, Growth and accretion of mass in an astrophysical model. II,, Appl. Math. (Warsaw), 23 (1995), 351. Google Scholar

[6]

P. Biler, D. Hilhorst and T. Nadzieja, Existence and nonexistence of solutions for a model gravitational of particles. II,, Colloq. Math., 67 (1994), 297. Google Scholar

[7]

M. P. Brenner, P. Constantin, L. P. Kadanoff, A. Schenkel and S. C. Venkataramani, Diffusion, attraction and collapse,, Nonlinearity, 12 (1999), 1071. doi: 10.1088/0951-7715/12/4/320. Google Scholar

[8]

X.-Y. Chen and P. Poláčik, Asymptotic periodicity of positive solutions of reaction diffusion equations on a ball,, J. Reine Angew. Math., 472 (1996), 17. Google Scholar

[9]

M. Fila and P. Poláčik, Global solutions of a semilinear parabolic equation,, Adv. Differential Equations, 4 (1999), 163. Google Scholar

[10]

A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations,, Indiana Univ. Math. J., 34 (1985), 425. doi: 10.1512/iumj.1985.34.34025. Google Scholar

[11]

Y. Giga, N. Mizoguchi and T. Senba, Asymptotic behavior of type I blowup solutions to a parabolic-elliptic system of drift-diffusion type,, Arch. Rational Mech. Anal., 201 (2011), 549. doi: 10.1007/s00205-010-0394-7. Google Scholar

[12]

I. A. Guerra and M. A. Peletier, Self-similar blow-up for a diffusion-attraction problem,, Nonlinearity, 17 (2004), 2137. doi: 10.1088/0951-7715/17/6/007. Google Scholar

[13]

P. Hartman, "Ordinary Differential Equations,", John Wiley & Sons, (1964). Google Scholar

[14]

M. A. Herrero, E. Medina and J. J. L. Velázquez, Finite-time aggregation into a single point in a reaction-diffusion system,, Nonlinearity, 10 (1997), 1739. doi: 10.1088/0951-7715/10/6/016. Google Scholar

[15]

M. A. Herrero, E. Medina and J. J. L. Velázquez, Self-similar blowup for a reaction-diffusion system,, Journal of Computational and Applied Mathematics, 97 (1998), 99. doi: 10.1016/S0377-0427(98)00104-6. Google Scholar

[16]

M. A. Herrero and J. J. L. Velázquez, Singularity patterns in a chemotaxis model,, Math. Ann., 306 (1996), 583. doi: 10.1007/BF01445268. Google Scholar

[17]

M. A. Herrero and J. J. L. Velázquez, Chemotactic collapse for the Keller-Segel model,, J. Math. Biol., 35 (1996), 177. doi: 10.1007/s002850050049. Google Scholar

[18]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[19]

J. Matos, Convergence of blow-up solutions of nonlinear heat equations in the supercritical case,, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 1197. doi: 10.1017/S0308210500019351. Google Scholar

[20]

N. Mizoguchi and T. Senba, A sufficient condition for type I blowup in a parabolic-elliptic system,, J. Differential Equations, 250 (2011), 182. doi: 10.1016/j.jde.2010.10.016. Google Scholar

[21]

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system,, Adv. Math. Sci. Appl., 5 (1995), 581. Google Scholar

[22]

V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology,, J. Theor. Biol., 42 (1973), 63. doi: 10.1016/0022-5193(73)90149-5. Google Scholar

[23]

T. Senba, Blowup behavior of radial solutions Jäger-Luckhaus system in high dimensional domains,, Funkcial Ekvac., 48 (2005), 247. doi: 10.1619/fesi.48.247. Google Scholar

[24]

T. Senba, Type II blowup of solutions to a simplified Keller-Segel system in two dimensional domains,, Nonlinear Anal., 66 (2007), 1817. doi: 10.1016/j.na.2006.02.027. Google Scholar

[25]

T. Senba and T. Suzuki, Chemotactic collapse in a parabolic-elliptic system of mathematical biology,, Adv. Differential Equations, 6 (2001), 21. Google Scholar

[26]

T. Suzuki, "Free Energy and Self-Interacting Particles,", Progress in Nonlinear Differential Equations and their Applications, 62 (2005). Google Scholar

[27]

G. Wolansky, On steady distributions of self-attracting clusters under friction and fluctuations,, Arch. Rational Mech. Anal., 119 (1992), 355. doi: 10.1007/BF01837114. Google Scholar

[28]

G. Wolansky, On the evolution of self-interacting clusters and applications to semilinear equations with exponential nonlinearity,, J. Anal. Math., 59 (1992), 251. doi: 10.1007/BF02790230. Google Scholar

show all references

References:
[1]

S. Angenent, The zero set of a solution of a parabolic equation,, J. Reine Angew. Math., 390 (1988), 79. Google Scholar

[2]

J. Bebernes and D. Eberly, A description of self-similar blow-up for dimensions $n \geq 3$,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 1. Google Scholar

[3]

P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles. III,, Colloq. Math., 68 (1995), 229. Google Scholar

[4]

P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles. I,, Colloq. Math., 66 (1994), 319. Google Scholar

[5]

P. Biler and T. Nadzieja, Growth and accretion of mass in an astrophysical model. II,, Appl. Math. (Warsaw), 23 (1995), 351. Google Scholar

[6]

P. Biler, D. Hilhorst and T. Nadzieja, Existence and nonexistence of solutions for a model gravitational of particles. II,, Colloq. Math., 67 (1994), 297. Google Scholar

[7]

M. P. Brenner, P. Constantin, L. P. Kadanoff, A. Schenkel and S. C. Venkataramani, Diffusion, attraction and collapse,, Nonlinearity, 12 (1999), 1071. doi: 10.1088/0951-7715/12/4/320. Google Scholar

[8]

X.-Y. Chen and P. Poláčik, Asymptotic periodicity of positive solutions of reaction diffusion equations on a ball,, J. Reine Angew. Math., 472 (1996), 17. Google Scholar

[9]

M. Fila and P. Poláčik, Global solutions of a semilinear parabolic equation,, Adv. Differential Equations, 4 (1999), 163. Google Scholar

[10]

A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations,, Indiana Univ. Math. J., 34 (1985), 425. doi: 10.1512/iumj.1985.34.34025. Google Scholar

[11]

Y. Giga, N. Mizoguchi and T. Senba, Asymptotic behavior of type I blowup solutions to a parabolic-elliptic system of drift-diffusion type,, Arch. Rational Mech. Anal., 201 (2011), 549. doi: 10.1007/s00205-010-0394-7. Google Scholar

[12]

I. A. Guerra and M. A. Peletier, Self-similar blow-up for a diffusion-attraction problem,, Nonlinearity, 17 (2004), 2137. doi: 10.1088/0951-7715/17/6/007. Google Scholar

[13]

P. Hartman, "Ordinary Differential Equations,", John Wiley & Sons, (1964). Google Scholar

[14]

M. A. Herrero, E. Medina and J. J. L. Velázquez, Finite-time aggregation into a single point in a reaction-diffusion system,, Nonlinearity, 10 (1997), 1739. doi: 10.1088/0951-7715/10/6/016. Google Scholar

[15]

M. A. Herrero, E. Medina and J. J. L. Velázquez, Self-similar blowup for a reaction-diffusion system,, Journal of Computational and Applied Mathematics, 97 (1998), 99. doi: 10.1016/S0377-0427(98)00104-6. Google Scholar

[16]

M. A. Herrero and J. J. L. Velázquez, Singularity patterns in a chemotaxis model,, Math. Ann., 306 (1996), 583. doi: 10.1007/BF01445268. Google Scholar

[17]

M. A. Herrero and J. J. L. Velázquez, Chemotactic collapse for the Keller-Segel model,, J. Math. Biol., 35 (1996), 177. doi: 10.1007/s002850050049. Google Scholar

[18]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[19]

J. Matos, Convergence of blow-up solutions of nonlinear heat equations in the supercritical case,, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 1197. doi: 10.1017/S0308210500019351. Google Scholar

[20]

N. Mizoguchi and T. Senba, A sufficient condition for type I blowup in a parabolic-elliptic system,, J. Differential Equations, 250 (2011), 182. doi: 10.1016/j.jde.2010.10.016. Google Scholar

[21]

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system,, Adv. Math. Sci. Appl., 5 (1995), 581. Google Scholar

[22]

V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology,, J. Theor. Biol., 42 (1973), 63. doi: 10.1016/0022-5193(73)90149-5. Google Scholar

[23]

T. Senba, Blowup behavior of radial solutions Jäger-Luckhaus system in high dimensional domains,, Funkcial Ekvac., 48 (2005), 247. doi: 10.1619/fesi.48.247. Google Scholar

[24]

T. Senba, Type II blowup of solutions to a simplified Keller-Segel system in two dimensional domains,, Nonlinear Anal., 66 (2007), 1817. doi: 10.1016/j.na.2006.02.027. Google Scholar

[25]

T. Senba and T. Suzuki, Chemotactic collapse in a parabolic-elliptic system of mathematical biology,, Adv. Differential Equations, 6 (2001), 21. Google Scholar

[26]

T. Suzuki, "Free Energy and Self-Interacting Particles,", Progress in Nonlinear Differential Equations and their Applications, 62 (2005). Google Scholar

[27]

G. Wolansky, On steady distributions of self-attracting clusters under friction and fluctuations,, Arch. Rational Mech. Anal., 119 (1992), 355. doi: 10.1007/BF01837114. Google Scholar

[28]

G. Wolansky, On the evolution of self-interacting clusters and applications to semilinear equations with exponential nonlinearity,, J. Anal. Math., 59 (1992), 251. doi: 10.1007/BF02790230. Google Scholar

[1]

Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 233-255. doi: 10.3934/dcdss.2020013

[2]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[3]

Shota Sato, Eiji Yanagida. Forward self-similar solution with a moving singularity for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 313-331. doi: 10.3934/dcds.2010.26.313

[4]

Ansgar Jüngel, Oliver Leingang. Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel models. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4755-4782. doi: 10.3934/dcdsb.2019029

[5]

Adrien Blanchet, Philippe Laurençot. Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 47-60. doi: 10.3934/cpaa.2012.11.47

[6]

Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671

[7]

Bendong Lou. Self-similar solutions in a sector for a quasilinear parabolic equation. Networks & Heterogeneous Media, 2012, 7 (4) : 857-879. doi: 10.3934/nhm.2012.7.857

[8]

Shota Sato, Eiji Yanagida. Singular backward self-similar solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 897-906. doi: 10.3934/dcdss.2011.4.897

[9]

Marek Fila, Michael Winkler, Eiji Yanagida. Convergence to self-similar solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 703-716. doi: 10.3934/dcds.2008.21.703

[10]

Giuseppe Maria Coclite, Helge Holden, Kenneth H. Karlsen. Wellposedness for a parabolic-elliptic system. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 659-682. doi: 10.3934/dcds.2005.13.659

[11]

Huiling Li, Mingxin Wang. Properties of blow-up solutions to a parabolic system with nonlinear localized terms. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 683-700. doi: 10.3934/dcds.2005.13.683

[12]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[13]

Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225

[14]

Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809

[15]

Monica Marras, Stella Vernier Piro, Giuseppe Viglialoro. Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system. Conference Publications, 2015, 2015 (special) : 809-816. doi: 10.3934/proc.2015.0809

[16]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[17]

Weronika Biedrzycka, Marta Tyran-Kamińska. Self-similar solutions of fragmentation equations revisited. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 13-27. doi: 10.3934/dcdsb.2018002

[18]

Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801

[19]

Hideo Kubo, Kotaro Tsugawa. Global solutions and self-similar solutions of the coupled system of semilinear wave equations in three space dimensions. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 471-482. doi: 10.3934/dcds.2003.9.471

[20]

C. Brändle, F. Quirós, Julio D. Rossi. Non-simultaneous blow-up for a quasilinear parabolic system with reaction at the boundary. Communications on Pure & Applied Analysis, 2005, 4 (3) : 523-536. doi: 10.3934/cpaa.2005.4.523

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]