October  2012, 32(10): 3715-3732. doi: 10.3934/dcds.2012.32.3715

On stacked central configurations of the planar coorbital satellites problem

1. 

Núcleo de Formação Docente, Universidade Federal de Pernambuco, Caruaru-PE, CEP 55002-970, Brazil

2. 

Departamento de Matemática, Universidade Federal de Pernambuco, Recife-PE, CEP. 50540-740, Brazil

Received  March 2011 Revised  January 2012 Published  May 2012

In this work we look for central configurations of the planar $1+n$ body problem such that, after the addition of one or two satellites, we have a new planar central configuration. We determine all such configurations in two cases: the first, the addition of two satellites considering that all satellites have equal infinitesimal masses and the second case where one satellite is added but the infinitesimal masses are not necessarily equal.
Citation: Allyson Oliveira, Hildeberto Cabral. On stacked central configurations of the planar coorbital satellites problem. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3715-3732. doi: 10.3934/dcds.2012.32.3715
References:
[1]

A. Albouy and Y. Fu, Relative equilibria of four identical satellites,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), 2633.  doi: 10.1098/rspa.2009.0115.  Google Scholar

[2]

J. Casasayas, J. Llibre and A. Nunes, Central configurations of the planar $1+n$ body problem,, Celestial Mech. Dynam. Astronom., 60 (1994), 273.  doi: 10.1007/BF00693325.  Google Scholar

[3]

M. Corbera, J. Cors and J. Llibre, On the central configurations of the planar $1+3$ body problem,, Celestial Mech. Dynam. Astronom., 109 (2011), 27.  doi: 10.1007/s10569-010-9316-0.  Google Scholar

[4]

J. Cors, J. Llibre and M. Ollé, Central configurations of the planar coorbital satellite problem,, Celestial Mech. Dynam. Astronom., 89 (2004), 319.  doi: 10.1023/B:CELE.0000043569.25307.ab.  Google Scholar

[5]

Y. Hagihara, "Celestial Mechanics. Volume I: Dynamical Principles and Transformation Theory,", The MIT Press, (1970).   Google Scholar

[6]

G. Hall, Central configuration in the planar $1 + n$ body problem,, preprint, (1988).   Google Scholar

[7]

M. Hampton, Stacked central configurations: New examples in the planar five-body problem,, Nonlinearity, 18 (2005), 2299.  doi: 10.1088/0951-7715/18/5/021.  Google Scholar

[8]

J. Llibre and L. Mello, New central configurations for the planar 5-body problem,, Celestial Mech. Dynam. Astronom., 100 (2008), 141.  doi: 10.1007/s10569-007-9107-4.  Google Scholar

[9]

J. Maxwell, "On the Stability of Motion of Saturn's Rings,", Macmillan & Co., (1985).   Google Scholar

[10]

S. Renner and B. Sicardy, Stationary configurations for co-orbital satellites with small arbitrary masses,, Celestial Mech. Dynam. Astronom., 88 (2004), 397.  doi: 10.1023/B:CELE.0000023420.80881.67.  Google Scholar

[11]

D. Saari, On the role and the properties of $n$-body central configurations,, Celestial Mech., 21 (1980), 9.  doi: 10.1007/BF01230241.  Google Scholar

[12]

D. Saari, "Collisions, Rings, and Other Newtonian $N$-Body Problems,", CBMS Regional Conference Series in Mathematics, 104 (2005).   Google Scholar

[13]

A. Wintner, "The Analytical Foundations of Celestial Mechanics,", Princeton Mathematical Series, 5 (1941).   Google Scholar

show all references

References:
[1]

A. Albouy and Y. Fu, Relative equilibria of four identical satellites,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), 2633.  doi: 10.1098/rspa.2009.0115.  Google Scholar

[2]

J. Casasayas, J. Llibre and A. Nunes, Central configurations of the planar $1+n$ body problem,, Celestial Mech. Dynam. Astronom., 60 (1994), 273.  doi: 10.1007/BF00693325.  Google Scholar

[3]

M. Corbera, J. Cors and J. Llibre, On the central configurations of the planar $1+3$ body problem,, Celestial Mech. Dynam. Astronom., 109 (2011), 27.  doi: 10.1007/s10569-010-9316-0.  Google Scholar

[4]

J. Cors, J. Llibre and M. Ollé, Central configurations of the planar coorbital satellite problem,, Celestial Mech. Dynam. Astronom., 89 (2004), 319.  doi: 10.1023/B:CELE.0000043569.25307.ab.  Google Scholar

[5]

Y. Hagihara, "Celestial Mechanics. Volume I: Dynamical Principles and Transformation Theory,", The MIT Press, (1970).   Google Scholar

[6]

G. Hall, Central configuration in the planar $1 + n$ body problem,, preprint, (1988).   Google Scholar

[7]

M. Hampton, Stacked central configurations: New examples in the planar five-body problem,, Nonlinearity, 18 (2005), 2299.  doi: 10.1088/0951-7715/18/5/021.  Google Scholar

[8]

J. Llibre and L. Mello, New central configurations for the planar 5-body problem,, Celestial Mech. Dynam. Astronom., 100 (2008), 141.  doi: 10.1007/s10569-007-9107-4.  Google Scholar

[9]

J. Maxwell, "On the Stability of Motion of Saturn's Rings,", Macmillan & Co., (1985).   Google Scholar

[10]

S. Renner and B. Sicardy, Stationary configurations for co-orbital satellites with small arbitrary masses,, Celestial Mech. Dynam. Astronom., 88 (2004), 397.  doi: 10.1023/B:CELE.0000023420.80881.67.  Google Scholar

[11]

D. Saari, On the role and the properties of $n$-body central configurations,, Celestial Mech., 21 (1980), 9.  doi: 10.1007/BF01230241.  Google Scholar

[12]

D. Saari, "Collisions, Rings, and Other Newtonian $N$-Body Problems,", CBMS Regional Conference Series in Mathematics, 104 (2005).   Google Scholar

[13]

A. Wintner, "The Analytical Foundations of Celestial Mechanics,", Princeton Mathematical Series, 5 (1941).   Google Scholar

[1]

Ruediger Landes. Stable and unstable initial configuration in the theory wave fronts. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 797-808. doi: 10.3934/dcdss.2012.5.797

[2]

Martha Alvarez, Joaquin Delgado, Jaume Llibre. On the spatial central configurations of the 5--body problem and their bifurcations. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 505-518. doi: 10.3934/dcdss.2008.1.505

[3]

Eduardo Piña. Computing collinear 4-Body Problem central configurations with given masses. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1215-1230. doi: 10.3934/dcds.2013.33.1215

[4]

Martin Swaczyna, Petr Volný. Uniform motions in central fields. Journal of Geometric Mechanics, 2017, 9 (1) : 91-130. doi: 10.3934/jgm.2017004

[5]

Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901

[6]

Jeffrey K. Lawson, Tanya Schmah, Cristina Stoica. Euler-Poincaré reduction for systems with configuration space isotropy. Journal of Geometric Mechanics, 2011, 3 (2) : 261-275. doi: 10.3934/jgm.2011.3.261

[7]

Carlos Garca-Azpeitia, Jorge Ize. Bifurcation of periodic solutions from a ring configuration of discrete nonlinear oscillators. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 975-983. doi: 10.3934/dcdss.2013.6.975

[8]

Michael Björklund, Alexander Gorodnik. Central limit theorems in the geometry of numbers. Electronic Research Announcements, 2017, 24: 110-122. doi: 10.3934/era.2017.24.012

[9]

Montserrat Corbera, Jaume Llibre. On the existence of bi--pyramidal central configurations of the $n+2$--body problem with an $n$--gon base. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1049-1060. doi: 10.3934/dcds.2013.33.1049

[10]

Mao Chen, Xiangyang Tang, Zhizhong Zeng, Sanya Liu. An efficient heuristic algorithm for two-dimensional rectangular packing problem with central rectangle. Journal of Industrial & Management Optimization, 2020, 16 (1) : 495-510. doi: 10.3934/jimo.2018164

[11]

Gianni Arioli. Branches of periodic orbits for the planar restricted 3-body problem. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 745-755. doi: 10.3934/dcds.2004.11.745

[12]

Marcel Guardia, Tere M. Seara, Pau Martín, Lara Sabbagh. Oscillatory orbits in the restricted elliptic planar three body problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 229-256. doi: 10.3934/dcds.2017009

[13]

Haitao Yang, Yibin Zhang. Boundary bubbling solutions for a planar elliptic problem with exponential Neumann data. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5467-5502. doi: 10.3934/dcds.2017238

[14]

Jiamin Zhu, Emmanuel Trélat, Max Cerf. Planar tilting maneuver of a spacecraft: Singular arcs in the minimum time problem and chattering. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1347-1388. doi: 10.3934/dcdsb.2016.21.1347

[15]

Guowei Yu. Periodic solutions of the planar N-center problem with topological constraints. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5131-5162. doi: 10.3934/dcds.2016023

[16]

Marshall Hampton, Anders Nedergaard Jensen. Finiteness of relative equilibria in the planar generalized $N$-body problem with fixed subconfigurations. Journal of Geometric Mechanics, 2015, 7 (1) : 35-42. doi: 10.3934/jgm.2015.7.35

[17]

P.K. Newton, M. Ruith, E. Upchurch. The constrained planar N-vortex problem: I. Integrability. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 137-152. doi: 10.3934/dcdsb.2005.5.137

[18]

Balázs Boros, Josef Hofbauer, Stefan Müller, Georg Regensburger. Planar S-systems: Global stability and the center problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 707-727. doi: 10.3934/dcds.2019029

[19]

Elbaz I. Abouelmagd, Juan Luis García Guirao, Jaume Llibre. Periodic orbits for the perturbed planar circular restricted 3–body problem. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1007-1020. doi: 10.3934/dcdsb.2019003

[20]

Yuika Kajihara, Misturu Shibayama. Variational proof of the existence of brake orbits in the planar 2-center problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5785-5797. doi: 10.3934/dcds.2019254

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]