-
Previous Article
Bounds on the growth of high Sobolev norms of solutions to 2D Hartree equations
- DCDS Home
- This Issue
-
Next Article
Blow-up behavior of solutions to a parabolic-elliptic system on higher dimensional domains
On stacked central configurations of the planar coorbital satellites problem
1. | Núcleo de Formação Docente, Universidade Federal de Pernambuco, Caruaru-PE, CEP 55002-970, Brazil |
2. | Departamento de Matemática, Universidade Federal de Pernambuco, Recife-PE, CEP. 50540-740, Brazil |
References:
[1] |
A. Albouy and Y. Fu, Relative equilibria of four identical satellites, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), 2633-2645.
doi: 10.1098/rspa.2009.0115. |
[2] |
J. Casasayas, J. Llibre and A. Nunes, Central configurations of the planar $1+n$ body problem, Celestial Mech. Dynam. Astronom., 60 (1994), 273-288.
doi: 10.1007/BF00693325. |
[3] |
M. Corbera, J. Cors and J. Llibre, On the central configurations of the planar $1+3$ body problem, Celestial Mech. Dynam. Astronom., 109 (2011), 27-43.
doi: 10.1007/s10569-010-9316-0. |
[4] |
J. Cors, J. Llibre and M. Ollé, Central configurations of the planar coorbital satellite problem, Celestial Mech. Dynam. Astronom., 89 (2004), 319-342.
doi: 10.1023/B:CELE.0000043569.25307.ab. |
[5] |
Y. Hagihara, "Celestial Mechanics. Volume I: Dynamical Principles and Transformation Theory," The MIT Press, Cambridge, Mass.-London, 1970. |
[6] |
G. Hall, Central configuration in the planar $1 + n$ body problem, preprint, 1988. |
[7] |
M. Hampton, Stacked central configurations: New examples in the planar five-body problem, Nonlinearity, 18 (2005), 2299-2304.
doi: 10.1088/0951-7715/18/5/021. |
[8] |
J. Llibre and L. Mello, New central configurations for the planar 5-body problem, Celestial Mech. Dynam. Astronom., 100 (2008), 141-149.
doi: 10.1007/s10569-007-9107-4. |
[9] |
J. Maxwell, "On the Stability of Motion of Saturn's Rings," Macmillan & Co., London, 1985. |
[10] |
S. Renner and B. Sicardy, Stationary configurations for co-orbital satellites with small arbitrary masses, Celestial Mech. Dynam. Astronom., 88 (2004), 397-414.
doi: 10.1023/B:CELE.0000023420.80881.67. |
[11] |
D. Saari, On the role and the properties of $n$-body central configurations, Celestial Mech., 21 (1980), 9-20.
doi: 10.1007/BF01230241. |
[12] |
D. Saari, "Collisions, Rings, and Other Newtonian $N$-Body Problems," CBMS Regional Conference Series in Mathematics, 104, Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI, 2005. |
[13] |
A. Wintner, "The Analytical Foundations of Celestial Mechanics," Princeton Mathematical Series, 5, Princeton University Press, Princeton, NJ, 1941. |
show all references
References:
[1] |
A. Albouy and Y. Fu, Relative equilibria of four identical satellites, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), 2633-2645.
doi: 10.1098/rspa.2009.0115. |
[2] |
J. Casasayas, J. Llibre and A. Nunes, Central configurations of the planar $1+n$ body problem, Celestial Mech. Dynam. Astronom., 60 (1994), 273-288.
doi: 10.1007/BF00693325. |
[3] |
M. Corbera, J. Cors and J. Llibre, On the central configurations of the planar $1+3$ body problem, Celestial Mech. Dynam. Astronom., 109 (2011), 27-43.
doi: 10.1007/s10569-010-9316-0. |
[4] |
J. Cors, J. Llibre and M. Ollé, Central configurations of the planar coorbital satellite problem, Celestial Mech. Dynam. Astronom., 89 (2004), 319-342.
doi: 10.1023/B:CELE.0000043569.25307.ab. |
[5] |
Y. Hagihara, "Celestial Mechanics. Volume I: Dynamical Principles and Transformation Theory," The MIT Press, Cambridge, Mass.-London, 1970. |
[6] |
G. Hall, Central configuration in the planar $1 + n$ body problem, preprint, 1988. |
[7] |
M. Hampton, Stacked central configurations: New examples in the planar five-body problem, Nonlinearity, 18 (2005), 2299-2304.
doi: 10.1088/0951-7715/18/5/021. |
[8] |
J. Llibre and L. Mello, New central configurations for the planar 5-body problem, Celestial Mech. Dynam. Astronom., 100 (2008), 141-149.
doi: 10.1007/s10569-007-9107-4. |
[9] |
J. Maxwell, "On the Stability of Motion of Saturn's Rings," Macmillan & Co., London, 1985. |
[10] |
S. Renner and B. Sicardy, Stationary configurations for co-orbital satellites with small arbitrary masses, Celestial Mech. Dynam. Astronom., 88 (2004), 397-414.
doi: 10.1023/B:CELE.0000023420.80881.67. |
[11] |
D. Saari, On the role and the properties of $n$-body central configurations, Celestial Mech., 21 (1980), 9-20.
doi: 10.1007/BF01230241. |
[12] |
D. Saari, "Collisions, Rings, and Other Newtonian $N$-Body Problems," CBMS Regional Conference Series in Mathematics, 104, Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI, 2005. |
[13] |
A. Wintner, "The Analytical Foundations of Celestial Mechanics," Princeton Mathematical Series, 5, Princeton University Press, Princeton, NJ, 1941. |
[1] |
Ruediger Landes. Stable and unstable initial configuration in the theory wave fronts. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 797-808. doi: 10.3934/dcdss.2012.5.797 |
[2] |
Martha Alvarez, Joaquin Delgado, Jaume Llibre. On the spatial central configurations of the 5--body problem and their bifurcations. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 505-518. doi: 10.3934/dcdss.2008.1.505 |
[3] |
Eduardo Piña. Computing collinear 4-Body Problem central configurations with given masses. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1215-1230. doi: 10.3934/dcds.2013.33.1215 |
[4] |
Martin Swaczyna, Petr Volný. Uniform motions in central fields. Journal of Geometric Mechanics, 2017, 9 (1) : 91-130. doi: 10.3934/jgm.2017004 |
[5] |
Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901 |
[6] |
Jeffrey K. Lawson, Tanya Schmah, Cristina Stoica. Euler-Poincaré reduction for systems with configuration space isotropy. Journal of Geometric Mechanics, 2011, 3 (2) : 261-275. doi: 10.3934/jgm.2011.3.261 |
[7] |
Carlos Garca-Azpeitia, Jorge Ize. Bifurcation of periodic solutions from a ring configuration of discrete nonlinear oscillators. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 975-983. doi: 10.3934/dcdss.2013.6.975 |
[8] |
Michael Björklund, Alexander Gorodnik. Central limit theorems in the geometry of numbers. Electronic Research Announcements, 2017, 24: 110-122. doi: 10.3934/era.2017.24.012 |
[9] |
Montserrat Corbera, Jaume Llibre. On the existence of bi--pyramidal central configurations of the $n+2$--body problem with an $n$--gon base. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1049-1060. doi: 10.3934/dcds.2013.33.1049 |
[10] |
Mao Chen, Xiangyang Tang, Zhizhong Zeng, Sanya Liu. An efficient heuristic algorithm for two-dimensional rectangular packing problem with central rectangle. Journal of Industrial and Management Optimization, 2020, 16 (1) : 495-510. doi: 10.3934/jimo.2018164 |
[11] |
Gianni Arioli. Branches of periodic orbits for the planar restricted 3-body problem. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 745-755. doi: 10.3934/dcds.2004.11.745 |
[12] |
Marcel Guardia, Tere M. Seara, Pau Martín, Lara Sabbagh. Oscillatory orbits in the restricted elliptic planar three body problem. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 229-256. doi: 10.3934/dcds.2017009 |
[13] |
Haitao Yang, Yibin Zhang. Boundary bubbling solutions for a planar elliptic problem with exponential Neumann data. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5467-5502. doi: 10.3934/dcds.2017238 |
[14] |
Elbaz I. Abouelmagd, Juan Luis García Guirao, Jaume Llibre. Periodic orbits for the perturbed planar circular restricted 3–body problem. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1007-1020. doi: 10.3934/dcdsb.2019003 |
[15] |
Jiamin Zhu, Emmanuel Trélat, Max Cerf. Planar tilting maneuver of a spacecraft: Singular arcs in the minimum time problem and chattering. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1347-1388. doi: 10.3934/dcdsb.2016.21.1347 |
[16] |
Balázs Boros, Josef Hofbauer, Stefan Müller, Georg Regensburger. Planar S-systems: Global stability and the center problem. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 707-727. doi: 10.3934/dcds.2019029 |
[17] |
Guowei Yu. Periodic solutions of the planar N-center problem with topological constraints. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5131-5162. doi: 10.3934/dcds.2016023 |
[18] |
Yuika Kajihara, Misturu Shibayama. Variational proof of the existence of brake orbits in the planar 2-center problem. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5785-5797. doi: 10.3934/dcds.2019254 |
[19] |
Marshall Hampton, Anders Nedergaard Jensen. Finiteness of relative equilibria in the planar generalized $N$-body problem with fixed subconfigurations. Journal of Geometric Mechanics, 2015, 7 (1) : 35-42. doi: 10.3934/jgm.2015.7.35 |
[20] |
P.K. Newton, M. Ruith, E. Upchurch. The constrained planar N-vortex problem: I. Integrability. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 137-152. doi: 10.3934/dcdsb.2005.5.137 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]