October  2012, 32(10): 3733-3771. doi: 10.3934/dcds.2012.32.3733

Bounds on the growth of high Sobolev norms of solutions to 2D Hartree equations

1. 

Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States

Received  May 2010 Revised  January 2012 Published  May 2012

In this paper, we consider Hartree-type equations on the two-dimensional torus and on the plane. We prove polynomial bounds on the growth of high Sobolev norms of solutions to these equations. The proofs of our results are based on the adaptation to two dimensions of the techniques we had previously used in [49, 50] to study the analogous problem in one dimension. Since we are working in two dimensions, a more detailed analysis of the resonant frequencies is needed, as was previously used in the work of Colliander-Keel-Staffilani-Takaoka-Tao [19].
Citation: Vedran Sohinger. Bounds on the growth of high Sobolev norms of solutions to 2D Hartree equations. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3733-3771. doi: 10.3934/dcds.2012.32.3733
References:
[1]

D. Benney and A. Newell, Random wave closures, Stud. Appl. Math., 48 (1969), 29-53.

[2]

D. Benney and P. Saffman, Nonlinear interactions of random waves in a dispersive medium, Proc. Roy. Soc. A, 289 (1966), 301-320. doi: 10.1098/rspa.1966.0013.

[3]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal., 3 (1993), 107-156.

[4]

J. Bourgain, On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE,, Int. Math. Research Notices, 1996 (): 277. 

[5]

J. Bourgain, Refinements of Strichartz's inequality and applications to 2D-NLS with critical nonlinearity,, Int. Math. Research Notices, 1998 (): 253. 

[6]

J. Bourgain, "Nonlinear Schrödinger Equations," in "Hyperbolic Equations and Frequency Interactions'' (eds. L. Caffarelli and W. E), IAS/Park City Mathematics Series, 5, AMS, Providence, RI, (1999), 3-157.

[7]

J. Bourgain, Global solutions of nonlinear Schrödinger equations, AMS Colloquium Publications, 46, AMS, Providence, RI, 1999.

[8]

J. Bourgain, On growth of Sobolev norms in linear Schrödinger equations with smooth time dependent potential, J. Anal. Math., 77 (1999), 315-348. doi: 10.1007/BF02791265.

[9]

N. Burq, P. Gérard and N. Tzvetkov, An instability property of the nonlinear Schrödinger equation on $S^d$, Mathematical Research Letters, 9 (2002), 323-335.

[10]

N. Burq, P. Gérard and N. Tzvetkov, Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math., 159 (2005), 187-223. doi: 10.1007/s00222-004-0388-x.

[11]

F. Catoire and W.-M. Wang, Bounds on Sobolev norms for the nonlinear Schrödinger equation on general tori, preprint, (2008), arXiv:0809.4633.

[12]

T. Cazenave, "Semilinear Schrödinger Equations," Courant Lecture Notes in Mathematics, 10, New York University, CIMS, New York, AMS, Providence, RI, 2003.

[13]

J. Colliander, J.-M. Delort, C. E. Kenig and G. Staffilani, Bilinear estimates and applications to 2D NLS, Trans. of the American Math. Soc., 353 (2001), 3307-3325. doi: 10.1090/S0002-9947-01-02760-X.

[14]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal., 33 (2001), 649-669. doi: 10.1137/S0036141001384387.

[15]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Polynomial upper bounds for the orbital instability of the 1D cubic NLS below the energy norm, Discrete Contin. Dyn. Syst., 9 (2003), 31-54.

[16]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\mathbbR$ and $\mathbbT$, J. Amer. Math. Soc., 16 (2003), 705-749 (electronic). doi: 10.1090/S0894-0347-03-00421-1.

[17]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Multilinear estimates for periodic KdV equations, and applications, J. Funct. Anal., 211 (2004), 173-218. doi: 10.1016/S0022-1236(03)00218-0.

[18]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, A refined global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal., 34 (2002), 64-86. doi: 10.1137/S0036141001394541.

[19]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Resonant decompositions and the I-method for cubic nonlinear Schrödinger equation on $\mathbbR^2$, Disc. and Cont. Dynam. Sys., 21 (2008), 665-686. doi: 10.3934/dcds.2008.21.665.

[20]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbbR^3$, Ann. of Math. (2), 167 (2008), 767-865. doi: 10.4007/annals.2008.167.767.

[21]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Transfer of energy to high frequencies in the cubic nonlinear Schrödinger equation, Invent. Math., 181 (2010), 39-113. doi: 10.1007/s00222-010-0242-2.

[22]

J.-M. Delort, Growth of Sobolev norms of solutions of linear Schrödinger equations on some compact manifolds,, preprint, 2010 (): 2305. 

[23]

B. Dodson, Global well-posedness and scattering for the defocusing, $L^2 $- critical, nonlinear Schrödinger equation when $d \geq 3$, preprint, (2009), arXiv:0912.2467.

[24]

B. Dodson, Global well-posedness and scattering for the defocusing, $L^2 $- critical, nonlinear Schrödinger equation when $d=2$, preprint, (2010), arXiv:1006.1365.

[25]

B. Dodson, Global well-posedness and scattering for the defocusing, $L^2 $- critical, nonlinear Schrödinger equation when $d=1$, preprint, (2009), arXiv:1010.0040.

[26]

J. Duoandikoetxea, "Fourier Analysis," Graduate Studies in Mathematics, 29, AMS, Providence, RI, 2001.

[27]

J. Fröhlich and E. Lenzmann, "Mean-Field Limit of Quantum Bose Gases and Nonlinear Hartree Equation," Séminaire: É.D.P. 2003-2004, Exposé No. XIX, Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau, (2004), 26 pp.

[28]

J. Ginibre and T. Ozawa, Long-range scattering for non-linear Schrödinger and Hartree equations in space dimension $n\geq 2$, Comm. Math. Phys., 151 (1993), 619-645. doi: 10.1007/BF02097031.

[29]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal., 32 (1979), 1-32. doi: 10.1016/0022-1236(79)90076-4.

[30]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations with nonlocal interaction, Math. Z., 170 (1980), 109-136. doi: 10.1007/BF01214768.

[31]

J. Ginibre and G. Velo, Scattering theory in the energy space for a class of Hartree equations, Rev. Math. Phys., 12 (2000), 361-429. doi: 10.1142/S0129055X00000137.

[32]

J. Ginibre and G. Velo, Long range scattering and modified wave operators for some Hartree type equations. II, Ann. H. P., 1 (2000), 753-800.

[33]

J. Ginibre and G. Velo, Long range scattering and modified wave operators for some Hartree type equations. III. Gevrey spaces and low dimensions, J. Diff. Eq., 175 (2001), 415-501. doi: 10.1006/jdeq.2000.3969.

[34]

A. Grünrock, On the Cauchy- and periodic boundary value problem for a certain class of derivative nonlinear Schrödinger equations, preprint, 2006.

[35]

, Z. Hani,, Private communication., (). 

[36]

N. Hayashi, P. Naumkin and T. Ozawa, "Scattering Theory for the Hartree Equation," Hokkaido University Preprints, Series 358, Nov., 1996.

[37]

C. Kenig, G. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1-21.

[38]

C. Kenig, G. Ponce and L. Vega, Quadratic forms for the 1-D semilinear Schrödinger equation, Transactions of the AMS, 348 (1996), 3323-3353. doi: 10.1090/S0002-9947-96-01645-5.

[39]

C. Miao, Y. Wu and G. Xu, Dynamics for the focusing, energy-critical nonlinear Hartree equation, preprint, (2011), arXiv:1104.1229.

[40]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy critical, defocusing Hartree equation for radial data, J. Funct. Anal., 253 (2007), 605-627. doi: 10.1016/j.jfa.2007.09.008.

[41]

C. Miao, G. Xu and L. Zhao, The Cauchy problem for the Hartree equation, J. PDEs, 21 (2008), 22-24.

[42]

C. Miao, G. Xu and L. Zhao, Global well-posedness, scattering, and blow-up for the energy critical, focusing Hartree equation in the radial case, Coll. Math., 114 (2009), 213-236. doi: 10.4064/cm114-2-5.

[43]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the defocusing $H^{\frac{1}{2}}$ -subcritical Hartree equation on $\mathbbR^d$, Ann. I. H. Poincaré, NA, 26 (2009), 1831-1852.

[44]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation in $\mathbbR^{1+n}$, Comm. PDEs, 36 (2011), 729-776. doi: 10.1080/03605302.2010.531073.

[45]

C. Morawetz and W. A. Strauss, Decay and scattering of solutions of a nonlinear relativistic wave equation, Comm. Pure. Appl. Math., 25 (1972), 1-31. doi: 10.1002/cpa.3160250103.

[46]

B. Schlein, "Derivation of Effective Evolution Equations from Microscopic Quantum Dynamics," Lecture Notes, Clay Summer School on Evolution Equations, Zurich, (2008), arXiv:0807.4307.

[47]

C. Sogge, Oscillatory integrals and spherical harmonics, Duke Math. Jour., 53 (1986), 43-65. doi: 10.1215/S0012-7094-86-05303-2.

[48]

C. Sogge, Concerning the $\ell^p$ norm of spectral clusters for second order elliptic operators on compact manifolds, Jour. of Funct. Anal., 77 (1988), 123-138. doi: 10.1016/0022-1236(88)90081-X.

[49]

V. Sohinger, Bounds on the growth of high Sobolev norms of solutions to Nonlinear Schrödinger Equations on $S^1$, to appear in Diff. and Int. Eqs., (2010), arXiv:1003.5705.

[50]

V. Sohinger, Bounds on the growth of high Sobolev norms of solutions to nonlinear Schrödinger equations on $\mathbbR$, to appear in Indiana Univ. Math. J., (2010), arXiv:1003.5707.

[51]

G. Staffilani, On the growth of high Sobolev norms of solutions for KdV and Schrödinger equations, Duke Math. J., 86 (1997), 109-142. doi: 10.1215/S0012-7094-97-08604-X.

[52]

G. Staffilani, Quadratic forms for a 2-D semilinear Schrödinger equation, Duke Math. J., 86 (1997), 79-107. doi: 10.1215/S0012-7094-97-08603-8.

[53]

T. Tao, "Nonlinear Dispersive Equations: Local and Global Analysis," CBMS Reg. Conf. Series in Math., 106, Published for the Conference Board of the Mathematical Sciences, Washington, DC, AMS, Providence, RI, 2006.

[54]

V. E. Zakharov, Stability of periodic waves of finite amplitude on a surface of deep fluid, J. Appl. Mech. Tech. Phys., 9 (1968), 190-194.

[55]

S.-J. Zhong, The growth in time of higher Sobolev norms of solutions to Schrödinger equations on compact Riemannian manifolds, J. Differential Equations, 245 (2008), 359-376. doi: 10.1016/j.jde.2008.03.008.

show all references

References:
[1]

D. Benney and A. Newell, Random wave closures, Stud. Appl. Math., 48 (1969), 29-53.

[2]

D. Benney and P. Saffman, Nonlinear interactions of random waves in a dispersive medium, Proc. Roy. Soc. A, 289 (1966), 301-320. doi: 10.1098/rspa.1966.0013.

[3]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal., 3 (1993), 107-156.

[4]

J. Bourgain, On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE,, Int. Math. Research Notices, 1996 (): 277. 

[5]

J. Bourgain, Refinements of Strichartz's inequality and applications to 2D-NLS with critical nonlinearity,, Int. Math. Research Notices, 1998 (): 253. 

[6]

J. Bourgain, "Nonlinear Schrödinger Equations," in "Hyperbolic Equations and Frequency Interactions'' (eds. L. Caffarelli and W. E), IAS/Park City Mathematics Series, 5, AMS, Providence, RI, (1999), 3-157.

[7]

J. Bourgain, Global solutions of nonlinear Schrödinger equations, AMS Colloquium Publications, 46, AMS, Providence, RI, 1999.

[8]

J. Bourgain, On growth of Sobolev norms in linear Schrödinger equations with smooth time dependent potential, J. Anal. Math., 77 (1999), 315-348. doi: 10.1007/BF02791265.

[9]

N. Burq, P. Gérard and N. Tzvetkov, An instability property of the nonlinear Schrödinger equation on $S^d$, Mathematical Research Letters, 9 (2002), 323-335.

[10]

N. Burq, P. Gérard and N. Tzvetkov, Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math., 159 (2005), 187-223. doi: 10.1007/s00222-004-0388-x.

[11]

F. Catoire and W.-M. Wang, Bounds on Sobolev norms for the nonlinear Schrödinger equation on general tori, preprint, (2008), arXiv:0809.4633.

[12]

T. Cazenave, "Semilinear Schrödinger Equations," Courant Lecture Notes in Mathematics, 10, New York University, CIMS, New York, AMS, Providence, RI, 2003.

[13]

J. Colliander, J.-M. Delort, C. E. Kenig and G. Staffilani, Bilinear estimates and applications to 2D NLS, Trans. of the American Math. Soc., 353 (2001), 3307-3325. doi: 10.1090/S0002-9947-01-02760-X.

[14]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal., 33 (2001), 649-669. doi: 10.1137/S0036141001384387.

[15]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Polynomial upper bounds for the orbital instability of the 1D cubic NLS below the energy norm, Discrete Contin. Dyn. Syst., 9 (2003), 31-54.

[16]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\mathbbR$ and $\mathbbT$, J. Amer. Math. Soc., 16 (2003), 705-749 (electronic). doi: 10.1090/S0894-0347-03-00421-1.

[17]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Multilinear estimates for periodic KdV equations, and applications, J. Funct. Anal., 211 (2004), 173-218. doi: 10.1016/S0022-1236(03)00218-0.

[18]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, A refined global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal., 34 (2002), 64-86. doi: 10.1137/S0036141001394541.

[19]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Resonant decompositions and the I-method for cubic nonlinear Schrödinger equation on $\mathbbR^2$, Disc. and Cont. Dynam. Sys., 21 (2008), 665-686. doi: 10.3934/dcds.2008.21.665.

[20]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbbR^3$, Ann. of Math. (2), 167 (2008), 767-865. doi: 10.4007/annals.2008.167.767.

[21]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Transfer of energy to high frequencies in the cubic nonlinear Schrödinger equation, Invent. Math., 181 (2010), 39-113. doi: 10.1007/s00222-010-0242-2.

[22]

J.-M. Delort, Growth of Sobolev norms of solutions of linear Schrödinger equations on some compact manifolds,, preprint, 2010 (): 2305. 

[23]

B. Dodson, Global well-posedness and scattering for the defocusing, $L^2 $- critical, nonlinear Schrödinger equation when $d \geq 3$, preprint, (2009), arXiv:0912.2467.

[24]

B. Dodson, Global well-posedness and scattering for the defocusing, $L^2 $- critical, nonlinear Schrödinger equation when $d=2$, preprint, (2010), arXiv:1006.1365.

[25]

B. Dodson, Global well-posedness and scattering for the defocusing, $L^2 $- critical, nonlinear Schrödinger equation when $d=1$, preprint, (2009), arXiv:1010.0040.

[26]

J. Duoandikoetxea, "Fourier Analysis," Graduate Studies in Mathematics, 29, AMS, Providence, RI, 2001.

[27]

J. Fröhlich and E. Lenzmann, "Mean-Field Limit of Quantum Bose Gases and Nonlinear Hartree Equation," Séminaire: É.D.P. 2003-2004, Exposé No. XIX, Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau, (2004), 26 pp.

[28]

J. Ginibre and T. Ozawa, Long-range scattering for non-linear Schrödinger and Hartree equations in space dimension $n\geq 2$, Comm. Math. Phys., 151 (1993), 619-645. doi: 10.1007/BF02097031.

[29]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal., 32 (1979), 1-32. doi: 10.1016/0022-1236(79)90076-4.

[30]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations with nonlocal interaction, Math. Z., 170 (1980), 109-136. doi: 10.1007/BF01214768.

[31]

J. Ginibre and G. Velo, Scattering theory in the energy space for a class of Hartree equations, Rev. Math. Phys., 12 (2000), 361-429. doi: 10.1142/S0129055X00000137.

[32]

J. Ginibre and G. Velo, Long range scattering and modified wave operators for some Hartree type equations. II, Ann. H. P., 1 (2000), 753-800.

[33]

J. Ginibre and G. Velo, Long range scattering and modified wave operators for some Hartree type equations. III. Gevrey spaces and low dimensions, J. Diff. Eq., 175 (2001), 415-501. doi: 10.1006/jdeq.2000.3969.

[34]

A. Grünrock, On the Cauchy- and periodic boundary value problem for a certain class of derivative nonlinear Schrödinger equations, preprint, 2006.

[35]

, Z. Hani,, Private communication., (). 

[36]

N. Hayashi, P. Naumkin and T. Ozawa, "Scattering Theory for the Hartree Equation," Hokkaido University Preprints, Series 358, Nov., 1996.

[37]

C. Kenig, G. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1-21.

[38]

C. Kenig, G. Ponce and L. Vega, Quadratic forms for the 1-D semilinear Schrödinger equation, Transactions of the AMS, 348 (1996), 3323-3353. doi: 10.1090/S0002-9947-96-01645-5.

[39]

C. Miao, Y. Wu and G. Xu, Dynamics for the focusing, energy-critical nonlinear Hartree equation, preprint, (2011), arXiv:1104.1229.

[40]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy critical, defocusing Hartree equation for radial data, J. Funct. Anal., 253 (2007), 605-627. doi: 10.1016/j.jfa.2007.09.008.

[41]

C. Miao, G. Xu and L. Zhao, The Cauchy problem for the Hartree equation, J. PDEs, 21 (2008), 22-24.

[42]

C. Miao, G. Xu and L. Zhao, Global well-posedness, scattering, and blow-up for the energy critical, focusing Hartree equation in the radial case, Coll. Math., 114 (2009), 213-236. doi: 10.4064/cm114-2-5.

[43]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the defocusing $H^{\frac{1}{2}}$ -subcritical Hartree equation on $\mathbbR^d$, Ann. I. H. Poincaré, NA, 26 (2009), 1831-1852.

[44]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation in $\mathbbR^{1+n}$, Comm. PDEs, 36 (2011), 729-776. doi: 10.1080/03605302.2010.531073.

[45]

C. Morawetz and W. A. Strauss, Decay and scattering of solutions of a nonlinear relativistic wave equation, Comm. Pure. Appl. Math., 25 (1972), 1-31. doi: 10.1002/cpa.3160250103.

[46]

B. Schlein, "Derivation of Effective Evolution Equations from Microscopic Quantum Dynamics," Lecture Notes, Clay Summer School on Evolution Equations, Zurich, (2008), arXiv:0807.4307.

[47]

C. Sogge, Oscillatory integrals and spherical harmonics, Duke Math. Jour., 53 (1986), 43-65. doi: 10.1215/S0012-7094-86-05303-2.

[48]

C. Sogge, Concerning the $\ell^p$ norm of spectral clusters for second order elliptic operators on compact manifolds, Jour. of Funct. Anal., 77 (1988), 123-138. doi: 10.1016/0022-1236(88)90081-X.

[49]

V. Sohinger, Bounds on the growth of high Sobolev norms of solutions to Nonlinear Schrödinger Equations on $S^1$, to appear in Diff. and Int. Eqs., (2010), arXiv:1003.5705.

[50]

V. Sohinger, Bounds on the growth of high Sobolev norms of solutions to nonlinear Schrödinger equations on $\mathbbR$, to appear in Indiana Univ. Math. J., (2010), arXiv:1003.5707.

[51]

G. Staffilani, On the growth of high Sobolev norms of solutions for KdV and Schrödinger equations, Duke Math. J., 86 (1997), 109-142. doi: 10.1215/S0012-7094-97-08604-X.

[52]

G. Staffilani, Quadratic forms for a 2-D semilinear Schrödinger equation, Duke Math. J., 86 (1997), 79-107. doi: 10.1215/S0012-7094-97-08603-8.

[53]

T. Tao, "Nonlinear Dispersive Equations: Local and Global Analysis," CBMS Reg. Conf. Series in Math., 106, Published for the Conference Board of the Mathematical Sciences, Washington, DC, AMS, Providence, RI, 2006.

[54]

V. E. Zakharov, Stability of periodic waves of finite amplitude on a surface of deep fluid, J. Appl. Mech. Tech. Phys., 9 (1968), 190-194.

[55]

S.-J. Zhong, The growth in time of higher Sobolev norms of solutions to Schrödinger equations on compact Riemannian manifolds, J. Differential Equations, 245 (2008), 359-376. doi: 10.1016/j.jde.2008.03.008.

[1]

Myeongju Chae, Soonsik Kwon. The stability of nonlinear Schrödinger equations with a potential in high Sobolev norms revisited. Communications on Pure and Applied Analysis, 2016, 15 (2) : 341-365. doi: 10.3934/cpaa.2016.15.341

[2]

Raphaël Côte, Frédéric Valet. Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1039-1058. doi: 10.3934/cpaa.2021005

[3]

Joackim Bernier. Bounds on the growth of high discrete Sobolev norms for the cubic discrete nonlinear Schrödinger equations on $ h\mathbb{Z} $. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3179-3195. doi: 10.3934/dcds.2019131

[4]

F. Catoire, W. M. Wang. Bounds on Sobolev norms for the defocusing nonlinear Schrödinger equation on general flat tori. Communications on Pure and Applied Analysis, 2010, 9 (2) : 483-491. doi: 10.3934/cpaa.2010.9.483

[5]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[6]

Walid K. Abou Salem, Xiao Liu, Catherine Sulem. Numerical simulation of resonant tunneling of fast solitons for the nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1637-1649. doi: 10.3934/dcds.2011.29.1637

[7]

Seckin Demirbas. Local well-posedness for 2-D Schrödinger equation on irrational tori and bounds on Sobolev norms. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1517-1530. doi: 10.3934/cpaa.2017072

[8]

Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations and Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431

[9]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[10]

J. Colliander, M. Keel, Gigliola Staffilani, H. Takaoka, T. Tao. Resonant decompositions and the $I$-method for the cubic nonlinear Schrödinger equation on $\mathbb{R}^2$. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 665-686. doi: 10.3934/dcds.2008.21.665

[11]

Jianqing Chen. Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1613-1628. doi: 10.3934/dcdss.2016066

[12]

Carlos Banquet, Élder J. Villamizar-Roa. On the management fourth-order Schrödinger-Hartree equation. Evolution Equations and Control Theory, 2020, 9 (3) : 865-889. doi: 10.3934/eect.2020037

[13]

Yingying Xie, Jian Su, Liquan Mei. Blowup results and concentration in focusing Schrödinger-Hartree equation. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 5001-5017. doi: 10.3934/dcds.2020209

[14]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[15]

Felipe Hernandez. A decomposition for the Schrödinger equation with applications to bilinear and multilinear estimates. Communications on Pure and Applied Analysis, 2018, 17 (2) : 627-646. doi: 10.3934/cpaa.2018034

[16]

Benjamin Dodson. Global well-posedness and scattering for the defocusing, cubic nonlinear Schrödinger equation when $n = 3$ via a linear-nonlinear decomposition. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1905-1926. doi: 10.3934/dcds.2013.33.1905

[17]

Jincai Kang, Chunlei Tang. Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5239-5252. doi: 10.3934/cpaa.2020235

[18]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

[19]

Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903

[20]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (75)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]