October  2012, 32(10): 3787-3800. doi: 10.3934/dcds.2012.32.3787

The existence of uniform attractors for 3D Brinkman-Forchheimer equations

1. 

Department of Applied Mathematics, Shanghai Normal University, Shanghai 200234, China

2. 

Department of Mathematics and Information Science, Wenzhou University, Wenzhou, Zhejiang 325035, China

3. 

Department of Mathematics, Zhejiang Normal University, Jinhua, 321004, China

Received  April 2011 Revised  April 2012 Published  May 2012

The longtime dynamics of the three dimensional (3D) Brinkman-Forchheimer equations with time-dependent forcing term is investigated. It is proved that there exists a uniform attractor for this nonautonomous 3D Brinkman-Forchheimer equations in the space $\mathbb{H}^1(\Omega)$. When the Darcy coefficient $\alpha$ is properly large and $L^2_b$-norm of the forcing term is properly small, it is shown that there exists a unique bounded and asymptotically stable solution with interesting corollaries.
Citation: Yuncheng You, Caidi Zhao, Shengfan Zhou. The existence of uniform attractors for 3D Brinkman-Forchheimer equations. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3787-3800. doi: 10.3934/dcds.2012.32.3787
References:
[1]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," Translated and revised from the 1989 Russian original by Babin, Studies in Mathematics and its Applications, 25, North-Holland Publishing Co., Amsterdam, 1992.

[2]

O. Çelebi, V. Kalantarov and D. Uğurlu, On continuous dependence on coefficients of the Brinkman-Forchheimer equations, Applied Mathematics Letters, 19 (2006), 801-807. doi: 10.1016/j.aml.2005.11.002.

[3]

V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics," AMS Colloquium Publications, 49, AMS, Providence, RI, 2002.

[4]

M. Firdaouss, J.-L. Guermond and P. Le Quéré, Nonlinear corrections to Darcy's law at low Reynolds numbers, Journal of Fluid Mechanics, 343 (1997), 331-350. doi: 10.1017/S0022112097005843.

[5]

F. Franchi and B. Straughan, Continuous dependence and decay for the Forchheimer equations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3195-3202. doi: 10.1098/rspa.2003.1169.

[6]

T. Giorgi, Derivation of the Forchheimer law via matched asymptotic expansions, Transport in Porous Media, 29 (1997), 191-206. doi: 10.1023/A:1006533931383.

[7]

N. Ju, Existence of global attractor for the three-dimensional modified Navier-Stokes equations, Nonlinearity, 14 (2001), 777-786. doi: 10.1088/0951-7715/14/4/306.

[8]

V. K. Kalantarov and S. Zelik, Smooth attractor for the Brinkman-Forchheimer equations with fast growing nonlinearities, preprint, 2011, arXiv:1101.4070.

[9]

S. Lu, Attractors for nonautonomous 2D Navier-Stokes equations with less regular normal forces, J. Differential Equations, 230 (2006), 196-212. doi: 10.1016/j.jde.2006.07.009.

[10]

S. Lu, H. Wu and C. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces, Disc. Cont. Dyn. Syst., 13 (2005), 701-719. doi: 10.3934/dcds.2005.13.701.

[11]

Y. Ouyang and L. Yan, A note on the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Analysis, 70 (2009), 2054-2059. doi: 10.1016/j.na.2008.02.121.

[12]

L. E. Payne, J. C. Song and B. Straugham, Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455 (1999), 2173-2190. doi: 10.1098/rspa.1999.0398.

[13]

L. E. Payne and B. Straugham, Convergence and continuous dependence for the Brinkman-Forchheimer equations, Studies in Applied Mathematics, 102 (1999), 419-439. doi: 10.1111/1467-9590.00116.

[14]

R. Rosa, The global attractor for the 2D Navier-Stokes flow on some unbounded domains, Nonlinear Analysis, 32 (1998), 71-85. doi: 10.1016/S0362-546X(97)00453-7.

[15]

G. R. Sell and Y. You, "Dynamics of Evolutionary Equations," Applied Mathematical Sciences, 143, Springer-Verlag, New York, 2002.

[16]

A. Shenoy, Non-Newtonian fluid heat transfer in porous media, Adv. Heat transfer, 24 (1994), 101-190. doi: 10.1016/S0065-2717(08)70233-8.

[17]

B. Straughan, "Stability and Wave Motion in Porous Media," Applied Mathematical Sciences, 165, Springer, New York, 2008.

[18]

D. Ugurlu, On the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Analysis, 68 (2008), 1986-1992. doi: 10.1016/j.na.2007.01.025.

[19]

S. Whitaker, The Forchheimer equation: A theoretical development, Transport in Porous Media, 25 (1996), 27-62. doi: 10.1007/BF00141261.

[20]

B. Wang and S. Lin, Existence of global attractors for the three-dimensional Brinkman-Forchheimer equation, Math. Meth. Appl. Sci., 31 (2008), 1479-1495. doi: 10.1002/mma.985.

[21]

C. Zhao and S. Zhou, L$^2$-compact uniform attractors for a non-autonomous incompressible non-Newtonian fluid with locally uniformly integrable external forces in distribution space, J. Math. Phys., 48 (2007), 12 pp. doi: 10.1063/1.2709845.

[22]

C. Zhao and S. Zhou, Pullback attractors for a non-autonomous incompressible non-Newtonian fluid, J. Differential Equations, 238 (2007), 394-425. doi: 10.1016/j.jde.2007.04.001.

show all references

References:
[1]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," Translated and revised from the 1989 Russian original by Babin, Studies in Mathematics and its Applications, 25, North-Holland Publishing Co., Amsterdam, 1992.

[2]

O. Çelebi, V. Kalantarov and D. Uğurlu, On continuous dependence on coefficients of the Brinkman-Forchheimer equations, Applied Mathematics Letters, 19 (2006), 801-807. doi: 10.1016/j.aml.2005.11.002.

[3]

V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics," AMS Colloquium Publications, 49, AMS, Providence, RI, 2002.

[4]

M. Firdaouss, J.-L. Guermond and P. Le Quéré, Nonlinear corrections to Darcy's law at low Reynolds numbers, Journal of Fluid Mechanics, 343 (1997), 331-350. doi: 10.1017/S0022112097005843.

[5]

F. Franchi and B. Straughan, Continuous dependence and decay for the Forchheimer equations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3195-3202. doi: 10.1098/rspa.2003.1169.

[6]

T. Giorgi, Derivation of the Forchheimer law via matched asymptotic expansions, Transport in Porous Media, 29 (1997), 191-206. doi: 10.1023/A:1006533931383.

[7]

N. Ju, Existence of global attractor for the three-dimensional modified Navier-Stokes equations, Nonlinearity, 14 (2001), 777-786. doi: 10.1088/0951-7715/14/4/306.

[8]

V. K. Kalantarov and S. Zelik, Smooth attractor for the Brinkman-Forchheimer equations with fast growing nonlinearities, preprint, 2011, arXiv:1101.4070.

[9]

S. Lu, Attractors for nonautonomous 2D Navier-Stokes equations with less regular normal forces, J. Differential Equations, 230 (2006), 196-212. doi: 10.1016/j.jde.2006.07.009.

[10]

S. Lu, H. Wu and C. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces, Disc. Cont. Dyn. Syst., 13 (2005), 701-719. doi: 10.3934/dcds.2005.13.701.

[11]

Y. Ouyang and L. Yan, A note on the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Analysis, 70 (2009), 2054-2059. doi: 10.1016/j.na.2008.02.121.

[12]

L. E. Payne, J. C. Song and B. Straugham, Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455 (1999), 2173-2190. doi: 10.1098/rspa.1999.0398.

[13]

L. E. Payne and B. Straugham, Convergence and continuous dependence for the Brinkman-Forchheimer equations, Studies in Applied Mathematics, 102 (1999), 419-439. doi: 10.1111/1467-9590.00116.

[14]

R. Rosa, The global attractor for the 2D Navier-Stokes flow on some unbounded domains, Nonlinear Analysis, 32 (1998), 71-85. doi: 10.1016/S0362-546X(97)00453-7.

[15]

G. R. Sell and Y. You, "Dynamics of Evolutionary Equations," Applied Mathematical Sciences, 143, Springer-Verlag, New York, 2002.

[16]

A. Shenoy, Non-Newtonian fluid heat transfer in porous media, Adv. Heat transfer, 24 (1994), 101-190. doi: 10.1016/S0065-2717(08)70233-8.

[17]

B. Straughan, "Stability and Wave Motion in Porous Media," Applied Mathematical Sciences, 165, Springer, New York, 2008.

[18]

D. Ugurlu, On the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Analysis, 68 (2008), 1986-1992. doi: 10.1016/j.na.2007.01.025.

[19]

S. Whitaker, The Forchheimer equation: A theoretical development, Transport in Porous Media, 25 (1996), 27-62. doi: 10.1007/BF00141261.

[20]

B. Wang and S. Lin, Existence of global attractors for the three-dimensional Brinkman-Forchheimer equation, Math. Meth. Appl. Sci., 31 (2008), 1479-1495. doi: 10.1002/mma.985.

[21]

C. Zhao and S. Zhou, L$^2$-compact uniform attractors for a non-autonomous incompressible non-Newtonian fluid with locally uniformly integrable external forces in distribution space, J. Math. Phys., 48 (2007), 12 pp. doi: 10.1063/1.2709845.

[22]

C. Zhao and S. Zhou, Pullback attractors for a non-autonomous incompressible non-Newtonian fluid, J. Differential Equations, 238 (2007), 394-425. doi: 10.1016/j.jde.2007.04.001.

[1]

Wenjing Liu, Rong Yang, Xin-Guang Yang. Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay. Communications on Pure and Applied Analysis, 2021, 20 (5) : 1907-1930. doi: 10.3934/cpaa.2021052

[2]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[3]

Kush Kinra, Manil T. Mohan. Convergence of random attractors towards deterministic singleton attractor for 2D and 3D convective Brinkman-Forchheimer equations. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021061

[4]

Varga K. Kalantarov, Sergey Zelik. Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2037-2054. doi: 10.3934/cpaa.2012.11.2037

[5]

Qiangheng Zhang, Yangrong Li. Regular attractors of asymptotically autonomous stochastic 3D Brinkman-Forchheimer equations with delays. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3515-3537. doi: 10.3934/cpaa.2021117

[6]

Timir Karmakar, Meraj Alam, G. P. Raja Sekhar. Analysis of Brinkman-Forchheimer extended Darcy's model in a fluid saturated anisotropic porous channel. Communications on Pure and Applied Analysis, 2022, 21 (3) : 845-865. doi: 10.3934/cpaa.2022001

[7]

Manil T. Mohan. Optimal control problems governed by two dimensional convective Brinkman-Forchheimer equations. Evolution Equations and Control Theory, 2022, 11 (3) : 649-679. doi: 10.3934/eect.2021020

[8]

Shu Wang, Mengmeng Si, Rong Yang. Random attractors for non-autonomous stochastic Brinkman-Forchheimer equations on unbounded domains. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1621-1636. doi: 10.3934/cpaa.2022034

[9]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

[10]

Pardeep Kumar, Manil T. Mohan. Well-posedness of an inverse problem for two- and three-dimensional convective Brinkman-Forchheimer equations with the final overdetermination. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022024

[11]

Cedric Galusinski, Serguei Zelik. Uniform Gevrey regularity for the attractor of a damped wave equation. Conference Publications, 2003, 2003 (Special) : 305-312. doi: 10.3934/proc.2003.2003.305

[12]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[13]

Xueli Song, Jianhua Wu. Non-autonomous 2D Newton-Boussinesq equation with oscillating external forces and its uniform attractor. Evolution Equations and Control Theory, 2022, 11 (1) : 41-65. doi: 10.3934/eect.2020102

[14]

Manil T. Mohan. Global and exponential attractors for the 3D Kelvin-Voigt-Brinkman-Forchheimer equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3393-3436. doi: 10.3934/dcdsb.2020067

[15]

Seung-Yeal Ha, Jinyeong Park, Xiongtao Zhang. A global well-posedness and asymptotic dynamics of the kinetic Winfree equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1317-1344. doi: 10.3934/dcdsb.2019229

[16]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6387-6403. doi: 10.3934/dcdsb.2021024

[17]

Xiaolin Jia, Caidi Zhao, Juan Cao. Uniform attractor of the non-autonomous discrete Selkov model. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 229-248. doi: 10.3934/dcds.2014.34.229

[18]

David Rossmanith, Ashok Puri. Recasting a Brinkman-based acoustic model as the damped Burgers equation. Evolution Equations and Control Theory, 2016, 5 (3) : 463-474. doi: 10.3934/eect.2016014

[19]

Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic and Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381

[20]

Yangrong Li, Lianbing She, Jinyan Yin. Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1535-1557. doi: 10.3934/dcdsb.2018058

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (93)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]