October  2012, 32(10): 3787-3800. doi: 10.3934/dcds.2012.32.3787

The existence of uniform attractors for 3D Brinkman-Forchheimer equations

1. 

Department of Applied Mathematics, Shanghai Normal University, Shanghai 200234, China

2. 

Department of Mathematics and Information Science, Wenzhou University, Wenzhou, Zhejiang 325035, China

3. 

Department of Mathematics, Zhejiang Normal University, Jinhua, 321004, China

Received  April 2011 Revised  April 2012 Published  May 2012

The longtime dynamics of the three dimensional (3D) Brinkman-Forchheimer equations with time-dependent forcing term is investigated. It is proved that there exists a uniform attractor for this nonautonomous 3D Brinkman-Forchheimer equations in the space $\mathbb{H}^1(\Omega)$. When the Darcy coefficient $\alpha$ is properly large and $L^2_b$-norm of the forcing term is properly small, it is shown that there exists a unique bounded and asymptotically stable solution with interesting corollaries.
Citation: Yuncheng You, Caidi Zhao, Shengfan Zhou. The existence of uniform attractors for 3D Brinkman-Forchheimer equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3787-3800. doi: 10.3934/dcds.2012.32.3787
References:
[1]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", Translated and revised from the 1989 Russian original by Babin, 25 (1989).   Google Scholar

[2]

O. Çelebi, V. Kalantarov and D. Uğurlu, On continuous dependence on coefficients of the Brinkman-Forchheimer equations,, Applied Mathematics Letters, 19 (2006), 801.  doi: 10.1016/j.aml.2005.11.002.  Google Scholar

[3]

V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics,", AMS Colloquium Publications, 49 (2002).   Google Scholar

[4]

M. Firdaouss, J.-L. Guermond and P. Le Quéré, Nonlinear corrections to Darcy's law at low Reynolds numbers,, Journal of Fluid Mechanics, 343 (1997), 331.  doi: 10.1017/S0022112097005843.  Google Scholar

[5]

F. Franchi and B. Straughan, Continuous dependence and decay for the Forchheimer equations,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3195.  doi: 10.1098/rspa.2003.1169.  Google Scholar

[6]

T. Giorgi, Derivation of the Forchheimer law via matched asymptotic expansions,, Transport in Porous Media, 29 (1997), 191.  doi: 10.1023/A:1006533931383.  Google Scholar

[7]

N. Ju, Existence of global attractor for the three-dimensional modified Navier-Stokes equations,, Nonlinearity, 14 (2001), 777.  doi: 10.1088/0951-7715/14/4/306.  Google Scholar

[8]

V. K. Kalantarov and S. Zelik, Smooth attractor for the Brinkman-Forchheimer equations with fast growing nonlinearities,, preprint, (2011).   Google Scholar

[9]

S. Lu, Attractors for nonautonomous 2D Navier-Stokes equations with less regular normal forces,, J. Differential Equations, 230 (2006), 196.  doi: 10.1016/j.jde.2006.07.009.  Google Scholar

[10]

S. Lu, H. Wu and C. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces,, Disc. Cont. Dyn. Syst., 13 (2005), 701.  doi: 10.3934/dcds.2005.13.701.  Google Scholar

[11]

Y. Ouyang and L. Yan, A note on the existence of a global attractor for the Brinkman-Forchheimer equations,, Nonlinear Analysis, 70 (2009), 2054.  doi: 10.1016/j.na.2008.02.121.  Google Scholar

[12]

L. E. Payne, J. C. Song and B. Straugham, Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455 (1999), 2173.  doi: 10.1098/rspa.1999.0398.  Google Scholar

[13]

L. E. Payne and B. Straugham, Convergence and continuous dependence for the Brinkman-Forchheimer equations,, Studies in Applied Mathematics, 102 (1999), 419.  doi: 10.1111/1467-9590.00116.  Google Scholar

[14]

R. Rosa, The global attractor for the 2D Navier-Stokes flow on some unbounded domains,, Nonlinear Analysis, 32 (1998), 71.  doi: 10.1016/S0362-546X(97)00453-7.  Google Scholar

[15]

G. R. Sell and Y. You, "Dynamics of Evolutionary Equations,", Applied Mathematical Sciences, 143 (2002).   Google Scholar

[16]

A. Shenoy, Non-Newtonian fluid heat transfer in porous media,, Adv. Heat transfer, 24 (1994), 101.  doi: 10.1016/S0065-2717(08)70233-8.  Google Scholar

[17]

B. Straughan, "Stability and Wave Motion in Porous Media,", Applied Mathematical Sciences, 165 (2008).   Google Scholar

[18]

D. Ugurlu, On the existence of a global attractor for the Brinkman-Forchheimer equations,, Nonlinear Analysis, 68 (2008), 1986.  doi: 10.1016/j.na.2007.01.025.  Google Scholar

[19]

S. Whitaker, The Forchheimer equation: A theoretical development,, Transport in Porous Media, 25 (1996), 27.  doi: 10.1007/BF00141261.  Google Scholar

[20]

B. Wang and S. Lin, Existence of global attractors for the three-dimensional Brinkman-Forchheimer equation,, Math. Meth. Appl. Sci., 31 (2008), 1479.  doi: 10.1002/mma.985.  Google Scholar

[21]

C. Zhao and S. Zhou, L$^2$-compact uniform attractors for a non-autonomous incompressible non-Newtonian fluid with locally uniformly integrable external forces in distribution space,, J. Math. Phys., 48 (2007).  doi: 10.1063/1.2709845.  Google Scholar

[22]

C. Zhao and S. Zhou, Pullback attractors for a non-autonomous incompressible non-Newtonian fluid,, J. Differential Equations, 238 (2007), 394.  doi: 10.1016/j.jde.2007.04.001.  Google Scholar

show all references

References:
[1]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", Translated and revised from the 1989 Russian original by Babin, 25 (1989).   Google Scholar

[2]

O. Çelebi, V. Kalantarov and D. Uğurlu, On continuous dependence on coefficients of the Brinkman-Forchheimer equations,, Applied Mathematics Letters, 19 (2006), 801.  doi: 10.1016/j.aml.2005.11.002.  Google Scholar

[3]

V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics,", AMS Colloquium Publications, 49 (2002).   Google Scholar

[4]

M. Firdaouss, J.-L. Guermond and P. Le Quéré, Nonlinear corrections to Darcy's law at low Reynolds numbers,, Journal of Fluid Mechanics, 343 (1997), 331.  doi: 10.1017/S0022112097005843.  Google Scholar

[5]

F. Franchi and B. Straughan, Continuous dependence and decay for the Forchheimer equations,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3195.  doi: 10.1098/rspa.2003.1169.  Google Scholar

[6]

T. Giorgi, Derivation of the Forchheimer law via matched asymptotic expansions,, Transport in Porous Media, 29 (1997), 191.  doi: 10.1023/A:1006533931383.  Google Scholar

[7]

N. Ju, Existence of global attractor for the three-dimensional modified Navier-Stokes equations,, Nonlinearity, 14 (2001), 777.  doi: 10.1088/0951-7715/14/4/306.  Google Scholar

[8]

V. K. Kalantarov and S. Zelik, Smooth attractor for the Brinkman-Forchheimer equations with fast growing nonlinearities,, preprint, (2011).   Google Scholar

[9]

S. Lu, Attractors for nonautonomous 2D Navier-Stokes equations with less regular normal forces,, J. Differential Equations, 230 (2006), 196.  doi: 10.1016/j.jde.2006.07.009.  Google Scholar

[10]

S. Lu, H. Wu and C. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces,, Disc. Cont. Dyn. Syst., 13 (2005), 701.  doi: 10.3934/dcds.2005.13.701.  Google Scholar

[11]

Y. Ouyang and L. Yan, A note on the existence of a global attractor for the Brinkman-Forchheimer equations,, Nonlinear Analysis, 70 (2009), 2054.  doi: 10.1016/j.na.2008.02.121.  Google Scholar

[12]

L. E. Payne, J. C. Song and B. Straugham, Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455 (1999), 2173.  doi: 10.1098/rspa.1999.0398.  Google Scholar

[13]

L. E. Payne and B. Straugham, Convergence and continuous dependence for the Brinkman-Forchheimer equations,, Studies in Applied Mathematics, 102 (1999), 419.  doi: 10.1111/1467-9590.00116.  Google Scholar

[14]

R. Rosa, The global attractor for the 2D Navier-Stokes flow on some unbounded domains,, Nonlinear Analysis, 32 (1998), 71.  doi: 10.1016/S0362-546X(97)00453-7.  Google Scholar

[15]

G. R. Sell and Y. You, "Dynamics of Evolutionary Equations,", Applied Mathematical Sciences, 143 (2002).   Google Scholar

[16]

A. Shenoy, Non-Newtonian fluid heat transfer in porous media,, Adv. Heat transfer, 24 (1994), 101.  doi: 10.1016/S0065-2717(08)70233-8.  Google Scholar

[17]

B. Straughan, "Stability and Wave Motion in Porous Media,", Applied Mathematical Sciences, 165 (2008).   Google Scholar

[18]

D. Ugurlu, On the existence of a global attractor for the Brinkman-Forchheimer equations,, Nonlinear Analysis, 68 (2008), 1986.  doi: 10.1016/j.na.2007.01.025.  Google Scholar

[19]

S. Whitaker, The Forchheimer equation: A theoretical development,, Transport in Porous Media, 25 (1996), 27.  doi: 10.1007/BF00141261.  Google Scholar

[20]

B. Wang and S. Lin, Existence of global attractors for the three-dimensional Brinkman-Forchheimer equation,, Math. Meth. Appl. Sci., 31 (2008), 1479.  doi: 10.1002/mma.985.  Google Scholar

[21]

C. Zhao and S. Zhou, L$^2$-compact uniform attractors for a non-autonomous incompressible non-Newtonian fluid with locally uniformly integrable external forces in distribution space,, J. Math. Phys., 48 (2007).  doi: 10.1063/1.2709845.  Google Scholar

[22]

C. Zhao and S. Zhou, Pullback attractors for a non-autonomous incompressible non-Newtonian fluid,, J. Differential Equations, 238 (2007), 394.  doi: 10.1016/j.jde.2007.04.001.  Google Scholar

[1]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[2]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[3]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[4]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[5]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[6]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[7]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[8]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[9]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[10]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[11]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[12]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[13]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[14]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[15]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[16]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[17]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[18]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[19]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[20]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]