-
Previous Article
Large solutions of elliptic systems of second order and applications to the biharmonic equation
- DCDS Home
- This Issue
-
Next Article
Lie's reduction method and differential Galois theory in the complex analytic context
Mixed initial-boundary value problem for Ott-Sudan-Ostrovskiy equation
1. | Instituto de Física y Matemáticas, UMSNH, Edificio C-3, Ciudad Universitaria), Morelia CP 58040, Michoacán, Mexico |
2. | Instituto de Matemáticas, UNAM Campus Morelia, AP 61-3 (Xangari), Morelia CP 58089, Michoacán, Mexico |
References:
[1] |
Hans-Dieter Alber and Peicheng Zhu, Global solutions to an initial boundary value problem for the Mullins equation, J. Partial Differential Equations, 20 (2007), 30-44. |
[2] |
Ravi P. Agarwal, Donal O'Regan and Svatoslav Staněk, Positive and maximal positive solutions of singular mixed boundary value problem, Cent. Eur. J. Math., 7 (2009), 694-716.
doi: 10.2478/s11533-009-0049-9. |
[3] |
T. Buchukuri, O. Chkadua and D. Natroshvili, Mixed boundary value problems of thermopiezoelectricity for solids with interior cracks, Integral Equations Operator Theory, 64 (2009), 495-537.
doi: 10.1007/s00020-009-1694-x. |
[4] |
Mouffak Benchohra and Samira Hamani, Nonlinear boundary value problems for differential inclusions with Caputo fractional derivative, Topol. Methods Nonlinear Anal., 32 (2008), 115-130. |
[5] |
R. Brown, I. Mitrea, M. Mitrea and M. Wright, Mixed boundary value problems for the Stokes system, Trans. Amer. Math. Soc., 362 (2010), 1211-1230.
doi: 10.1090/S0002-9947-09-04774-6. |
[6] |
Jean-François Coulombel, Stability of finite difference schemes for hyperbolic initial boundary value problems, SIAM J. Numer. Anal., 47 (2009), 2844-2871.
doi: 10.1137/080728342. |
[7] |
Gilles Carbou and Bernard Hanouzet, Relaxation approximation of the Kerr model for the three-dimensional initial-boundary value problem, J. Hyperbolic Differ. Equ., 6 (2009), 577-614.
doi: 10.1142/S0219891609001939. |
[8] |
I. Chudinovich and C. Constanda, The traction initial-boundary value problem for bending of thermoelastic plates with cracks, Appl. Anal., 88 (2009), 961-975.
doi: 10.1080/00036810903042224. |
[9] |
F. D. Gakhov, Boundary value problems, Pergamon Press, Oxford-New York-Paris, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1966. |
[10] |
A. S. Fokas, The Davey-Stewartson equation on the half-plane, Comm. Math. Phys., 289 (2009), 957-993.
doi: 10.1007/s00220-009-0809-1. |
[11] |
Yiping Fu and Yongsheng Li, Initial boundary value problem for generalized 2D complex Ginzburg-Landau equation, J. Partial Differential Equations, 20 (2007), 65-70. |
[12] |
Helmut Friedrich, Initial boundary value problems for Einstein's field equations and geometric uniqueness, Gen. Relativity Gravitation, 41 (2009), 1947-1966.
doi: 10.1007/s10714-009-0800-3. |
[13] |
N. Hayashi, E. I. Kaikina, P. I. Naumkin and I. A. Shishmarev, "Asymptotics for Dissipative Nonlinear Equations," Lecture Notes in Mathematics, 1884, Springer-Verlag, Berlin, 2006. |
[14] |
Nakao Hayashi and Elena Kaikina, "Nonlinear Theory of Pseudodifferential Equations on a Half-line," North-Holland Mathematics Studies, 194, Elsevier Science B.V., Amsterdam, 2004. |
[15] |
Elena I. Kaikina, Subcritical pseudodifferential equation on a half-line with nonanalytic symbol, Differential Integral Equations, 18 (2005), 1341-1370. |
[16] |
Elena I. Kaikina, Pseudodifferential operator with a nonanalytic symbol on a half-line, J. of Mathematical Physics, 48 (2007), 113509, 20 pp.
doi: 10.1063/1.2804860. |
[17] |
Elena I. Kaikina, Critical Ostrovskiy-type equation on a half-line, Differential Integral Equations, 22 (2009), 69-98. |
[18] |
Elena I. Kaikina, Ott-Sudan-Ostrovskiy type equations on a segment with large initial data, Z. Angew. Math. Phys., 59 (2008), 647-675.
doi: 10.1007/s00033-007-6075-1. |
[19] |
Elena I. Kaikina, Nonlinear pseudoparabolic type equations on a half-line with large initial data, Nonlinear Anal., 67 (2007), 2839-2858.
doi: 10.1016/j.na.2006.09.044. |
[20] |
L. A. Ostrovsky, Short-wave asymptotics for weak shock waves and solitons in mechanics, Int. J. Non-Linear Mechanics, 11 (1976), 401-416.
doi: 10.1016/0020-7462(76)90026-3. |
[21] |
E. Ott and R. N. Sudan, Nonlinear theory of ion acoustic waves with Landau damping, Phys. Fluids, 12 (1969), 2388-2394.
doi: 10.1063/1.1692358. |
[22] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, "Fractional Integrals and Derivatives. Theory and Applications," Gordon and Breach Science Publishers, Yverdon, 1993. |
[23] |
Zhi-Qiang Shao, Global existence of classical solutions to the mixed initial-boundary value problem for quasilinear hyperbolic systems of diagonal form with large BV data, J. Math. Anal. Appl., 360 (2009), 398-411.
doi: 10.1016/j.jmaa.2009.06.066. |
[24] |
Sheng Zhang, A domain embedding method for mixed boundary value problems, C. R. Math. Acad. Sci. Paris, 343 (2006), 287-290. |
show all references
References:
[1] |
Hans-Dieter Alber and Peicheng Zhu, Global solutions to an initial boundary value problem for the Mullins equation, J. Partial Differential Equations, 20 (2007), 30-44. |
[2] |
Ravi P. Agarwal, Donal O'Regan and Svatoslav Staněk, Positive and maximal positive solutions of singular mixed boundary value problem, Cent. Eur. J. Math., 7 (2009), 694-716.
doi: 10.2478/s11533-009-0049-9. |
[3] |
T. Buchukuri, O. Chkadua and D. Natroshvili, Mixed boundary value problems of thermopiezoelectricity for solids with interior cracks, Integral Equations Operator Theory, 64 (2009), 495-537.
doi: 10.1007/s00020-009-1694-x. |
[4] |
Mouffak Benchohra and Samira Hamani, Nonlinear boundary value problems for differential inclusions with Caputo fractional derivative, Topol. Methods Nonlinear Anal., 32 (2008), 115-130. |
[5] |
R. Brown, I. Mitrea, M. Mitrea and M. Wright, Mixed boundary value problems for the Stokes system, Trans. Amer. Math. Soc., 362 (2010), 1211-1230.
doi: 10.1090/S0002-9947-09-04774-6. |
[6] |
Jean-François Coulombel, Stability of finite difference schemes for hyperbolic initial boundary value problems, SIAM J. Numer. Anal., 47 (2009), 2844-2871.
doi: 10.1137/080728342. |
[7] |
Gilles Carbou and Bernard Hanouzet, Relaxation approximation of the Kerr model for the three-dimensional initial-boundary value problem, J. Hyperbolic Differ. Equ., 6 (2009), 577-614.
doi: 10.1142/S0219891609001939. |
[8] |
I. Chudinovich and C. Constanda, The traction initial-boundary value problem for bending of thermoelastic plates with cracks, Appl. Anal., 88 (2009), 961-975.
doi: 10.1080/00036810903042224. |
[9] |
F. D. Gakhov, Boundary value problems, Pergamon Press, Oxford-New York-Paris, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1966. |
[10] |
A. S. Fokas, The Davey-Stewartson equation on the half-plane, Comm. Math. Phys., 289 (2009), 957-993.
doi: 10.1007/s00220-009-0809-1. |
[11] |
Yiping Fu and Yongsheng Li, Initial boundary value problem for generalized 2D complex Ginzburg-Landau equation, J. Partial Differential Equations, 20 (2007), 65-70. |
[12] |
Helmut Friedrich, Initial boundary value problems for Einstein's field equations and geometric uniqueness, Gen. Relativity Gravitation, 41 (2009), 1947-1966.
doi: 10.1007/s10714-009-0800-3. |
[13] |
N. Hayashi, E. I. Kaikina, P. I. Naumkin and I. A. Shishmarev, "Asymptotics for Dissipative Nonlinear Equations," Lecture Notes in Mathematics, 1884, Springer-Verlag, Berlin, 2006. |
[14] |
Nakao Hayashi and Elena Kaikina, "Nonlinear Theory of Pseudodifferential Equations on a Half-line," North-Holland Mathematics Studies, 194, Elsevier Science B.V., Amsterdam, 2004. |
[15] |
Elena I. Kaikina, Subcritical pseudodifferential equation on a half-line with nonanalytic symbol, Differential Integral Equations, 18 (2005), 1341-1370. |
[16] |
Elena I. Kaikina, Pseudodifferential operator with a nonanalytic symbol on a half-line, J. of Mathematical Physics, 48 (2007), 113509, 20 pp.
doi: 10.1063/1.2804860. |
[17] |
Elena I. Kaikina, Critical Ostrovskiy-type equation on a half-line, Differential Integral Equations, 22 (2009), 69-98. |
[18] |
Elena I. Kaikina, Ott-Sudan-Ostrovskiy type equations on a segment with large initial data, Z. Angew. Math. Phys., 59 (2008), 647-675.
doi: 10.1007/s00033-007-6075-1. |
[19] |
Elena I. Kaikina, Nonlinear pseudoparabolic type equations on a half-line with large initial data, Nonlinear Anal., 67 (2007), 2839-2858.
doi: 10.1016/j.na.2006.09.044. |
[20] |
L. A. Ostrovsky, Short-wave asymptotics for weak shock waves and solitons in mechanics, Int. J. Non-Linear Mechanics, 11 (1976), 401-416.
doi: 10.1016/0020-7462(76)90026-3. |
[21] |
E. Ott and R. N. Sudan, Nonlinear theory of ion acoustic waves with Landau damping, Phys. Fluids, 12 (1969), 2388-2394.
doi: 10.1063/1.1692358. |
[22] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, "Fractional Integrals and Derivatives. Theory and Applications," Gordon and Breach Science Publishers, Yverdon, 1993. |
[23] |
Zhi-Qiang Shao, Global existence of classical solutions to the mixed initial-boundary value problem for quasilinear hyperbolic systems of diagonal form with large BV data, J. Math. Anal. Appl., 360 (2009), 398-411.
doi: 10.1016/j.jmaa.2009.06.066. |
[24] |
Sheng Zhang, A domain embedding method for mixed boundary value problems, C. R. Math. Acad. Sci. Paris, 343 (2006), 287-290. |
[1] |
Nakao Hayashi, Elena I. Kaikina, Pavel I. Naumkin. Large time behavior of solutions to the generalized derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 93-106. doi: 10.3934/dcds.1999.5.93 |
[2] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1447-1478. doi: 10.3934/cpaa.2021028 |
[3] |
Platon Surkov. Dynamical estimation of a noisy input in a system with a Caputo fractional derivative. The case of continuous measurements of a part of phase coordinates. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022020 |
[4] |
Jerry L. Bona, Laihan Luo. Large-time asymptotics of the generalized Benjamin-Ono-Burgers equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 15-50. doi: 10.3934/dcdss.2011.4.15 |
[5] |
Nakao Hayashi, Pavel I. Naumkin. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 383-400. doi: 10.3934/dcds.1997.3.383 |
[6] |
Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895 |
[7] |
Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The numerical solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 621-636. doi: 10.3934/naco.2021026 |
[8] |
Hiroshi Takeda. Large time behavior of solutions for a nonlinear damped wave equation. Communications on Pure and Applied Analysis, 2016, 15 (1) : 41-55. doi: 10.3934/cpaa.2016.15.41 |
[9] |
Yajing Li, Yejuan Wang. The existence and exponential behavior of solutions to time fractional stochastic delay evolution inclusions with nonlinear multiplicative noise and fractional noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2665-2697. doi: 10.3934/dcdsb.2020027 |
[10] |
Jean Dolbeault, Giuseppe Toscani. Fast diffusion equations: Matching large time asymptotics by relative entropy methods. Kinetic and Related Models, 2011, 4 (3) : 701-716. doi: 10.3934/krm.2011.4.701 |
[11] |
Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations and Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007 |
[12] |
Walter Allegretto, Yanping Lin, Zhiyong Zhang. Convergence to convection-diffusion waves for solutions to dissipative nonlinear evolution equations. Conference Publications, 2009, 2009 (Special) : 11-23. doi: 10.3934/proc.2009.2009.11 |
[13] |
Gaku Hoshino. Dissipative nonlinear schrödinger equations for large data in one space dimension. Communications on Pure and Applied Analysis, 2020, 19 (2) : 967-981. doi: 10.3934/cpaa.2020044 |
[14] |
Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137 |
[15] |
Tran Bao Ngoc, Nguyen Huy Tuan, R. Sakthivel, Donal O'Regan. Analysis of nonlinear fractional diffusion equations with a Riemann-liouville derivative. Evolution Equations and Control Theory, 2022, 11 (2) : 439-455. doi: 10.3934/eect.2021007 |
[16] |
Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3555-3577. doi: 10.3934/dcds.2021007 |
[17] |
Tomasz Komorowski. Long time asymptotics of a degenerate linear kinetic transport equation. Kinetic and Related Models, 2014, 7 (1) : 79-108. doi: 10.3934/krm.2014.7.79 |
[18] |
Vladimir Varlamov. Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 675-702. doi: 10.3934/dcds.2001.7.675 |
[19] |
Mingming Chen, Xianguo Geng, Kedong Wang. Long-time asymptotics for the modified complex short pulse equation. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022060 |
[20] |
Feng Li, Erik Lindgren. Large time behavior for a nonlocal nonlinear gradient flow. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022079 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]