November  2012, 32(11): 3861-3869. doi: 10.3934/dcds.2012.32.3861

On domain perturbation for super-linear Neumann problems and a question of Y. Lou, W-M Ni and L. Su

1. 

School of Mathematics and Statistics, University of Sydney, N.S.W. 2006, Australia

Received  February 2011 Revised  June 2011 Published  June 2012

We prove a new domain variation result for Neumann problems and apply it to give new examples of non-uniqueness of positive solutions.
Citation: E. N. Dancer. On domain perturbation for super-linear Neumann problems and a question of Y. Lou, W-M Ni and L. Su. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3861-3869. doi: 10.3934/dcds.2012.32.3861
References:
[1]

T. Bartsch and E. N. Dancer, Poincaré-Hopf type formulas on convex sets of Banach spaces,, Topol. Methods Nonlinear Anal., 34 (2009), 213.   Google Scholar

[2]

E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations,, J. Differential Equations, 74 (1988), 120.  doi: 10.1016/0022-0396(88)90021-6.  Google Scholar

[3]

E. N. Dancer, Domain variation for certain sets of solutions and applications,, Topol. Methods Nonlinear Anal., 7 (1996), 95.   Google Scholar

[4]

E. N. Dancer, On connecting orbits for competing species equations with large interactions,, Topol. Methods Nonlinear Anal. \textbf{24} (2004), 24 (2004), 1.   Google Scholar

[5]

E. N. Dancer, Global structure of the solutions of non-linear real analytic eigenvalue problems,, Proc. London Math. Soc. (3), 27 (1973), 747.  doi: 10.1112/plms/s3-27.4.747.  Google Scholar

[6]

E. N. Dancer and D. Daners, Domain perturbation for elliptic equations subject to Robin boundary conditions,, J. Differential Equations, 138 (1997), 86.  doi: 10.1006/jdeq.1997.3256.  Google Scholar

[7]

D. Daners, Domain perturbation for linear and semi-linear boundary value problems,, in, (2008), 1.   Google Scholar

[8]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Second edition, 224 (1983).   Google Scholar

[9]

D. Henry, "Perturbation of the Boundary in Boundary-Value Problems of Partial Differential Equations,", With editorial assistance from Jack Hale and Ant\^onio Luiz Pereira, 318 (2005).   Google Scholar

[10]

Y. Lou, W.-M. Ni and L. Su, An indefinite nonlinear diffusion problem in population genetics. {II. Stability and multiplicity},, Discrete Contin. Dyn. Syst., 27 (2010), 643.  doi: 10.3934/dcds.2010.27.643.  Google Scholar

[11]

K. P. Rybakowski, "The Homotopy Index and Partial Differential Equations,", Universitext, (1987).   Google Scholar

[12]

J.-C. Saut and R. Temam, Generic properties of nonlinear boundary value problems,, Comm. Partial Differential Equations, 4 (1979), 293.   Google Scholar

show all references

References:
[1]

T. Bartsch and E. N. Dancer, Poincaré-Hopf type formulas on convex sets of Banach spaces,, Topol. Methods Nonlinear Anal., 34 (2009), 213.   Google Scholar

[2]

E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations,, J. Differential Equations, 74 (1988), 120.  doi: 10.1016/0022-0396(88)90021-6.  Google Scholar

[3]

E. N. Dancer, Domain variation for certain sets of solutions and applications,, Topol. Methods Nonlinear Anal., 7 (1996), 95.   Google Scholar

[4]

E. N. Dancer, On connecting orbits for competing species equations with large interactions,, Topol. Methods Nonlinear Anal. \textbf{24} (2004), 24 (2004), 1.   Google Scholar

[5]

E. N. Dancer, Global structure of the solutions of non-linear real analytic eigenvalue problems,, Proc. London Math. Soc. (3), 27 (1973), 747.  doi: 10.1112/plms/s3-27.4.747.  Google Scholar

[6]

E. N. Dancer and D. Daners, Domain perturbation for elliptic equations subject to Robin boundary conditions,, J. Differential Equations, 138 (1997), 86.  doi: 10.1006/jdeq.1997.3256.  Google Scholar

[7]

D. Daners, Domain perturbation for linear and semi-linear boundary value problems,, in, (2008), 1.   Google Scholar

[8]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Second edition, 224 (1983).   Google Scholar

[9]

D. Henry, "Perturbation of the Boundary in Boundary-Value Problems of Partial Differential Equations,", With editorial assistance from Jack Hale and Ant\^onio Luiz Pereira, 318 (2005).   Google Scholar

[10]

Y. Lou, W.-M. Ni and L. Su, An indefinite nonlinear diffusion problem in population genetics. {II. Stability and multiplicity},, Discrete Contin. Dyn. Syst., 27 (2010), 643.  doi: 10.3934/dcds.2010.27.643.  Google Scholar

[11]

K. P. Rybakowski, "The Homotopy Index and Partial Differential Equations,", Universitext, (1987).   Google Scholar

[12]

J.-C. Saut and R. Temam, Generic properties of nonlinear boundary value problems,, Comm. Partial Differential Equations, 4 (1979), 293.   Google Scholar

[1]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[2]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[3]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[4]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[5]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[6]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[7]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[10]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[11]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[12]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[13]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[14]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[15]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[16]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[17]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[18]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[19]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[20]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]