November  2012, 32(11): 3895-3956. doi: 10.3934/dcds.2012.32.3895

On the behavior at collisions of solutions to Schrödinger equations with many-particle and cylindrical potentials

1. 

Università di Milano Bicocca, Dipartimento di Matematica e Applicazioni, Via Cozzi 53, 20125 Milano

2. 

Università degli Studi del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy

Received  July 2011 Revised  December 2011 Published  June 2012

The asymptotic behavior of solutions to Schrödinger equations with singular homogeneous potentials is investigated. Through an Almgren type monotonicity formula and separation of variables, we describe the exact asymptotics near the singularity of solutions to at most critical semilinear elliptic equations with cylindrical and quantum multi-body singular potentials. Furthermore, by an iterative Brezis-Kato procedure, pointwise upper estimate are derived.
Citation: Veronica Felli, Alberto Ferrero, Susanna Terracini. On the behavior at collisions of solutions to Schrödinger equations with many-particle and cylindrical potentials. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3895-3956. doi: 10.3934/dcds.2012.32.3895
References:
[1]

B. Abdellaoui, V. Felli and I. Peral, Some remarks on systems of elliptic equations doubly critical in the whole $\R^N$,, Calc. Var. Partial Differential Equations, 34 (2009), 97.  doi: 10.1007/s00526-008-0177-2.  Google Scholar

[2]

F. J. Almgren, Jr., $Q$ valued functions minimizing Dirichlet's integral and the regularity of area minimizing rectifiable currents up to codimension two,, Bull. Amer. Math. Soc. (N. S.), 8 (1983), 327.   Google Scholar

[3]

M. Badiale, V. Benci and S. Rolando, A nonlinear elliptic equation with singular potential and applications to nonlinear field equations,, J. Eur. Math. Soc., 9 (2007), 355.   Google Scholar

[4]

M. Badiale and S. Rolando, Elliptic problems with singular potential and double-power nonlinearity,, Mediterr. J. Math., 2 (2005), 417.   Google Scholar

[5]

M. Badiale and G. Tarantello, A Sobolev-Hardy inequalitywith applications to a nonlinear elliptic equation arising inastrophysics,, Arch. Ration. Mech. Anal., 163 (2002), 259.  doi: 10.1007/s002050200201.  Google Scholar

[6]

H. Baum and A. Juhl, "Conformal Differential Geometry. Q-Curvature and Conformal Holonomy,", Oberwolfach Seminars, 40 (2010).   Google Scholar

[7]

R. Bosi, J. Dolbeault and M. J. Esteban, Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators,, Commun. Pure Appl. Anal., 7 (2008), 533.   Google Scholar

[8]

H. Brézis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials,, J. Math. Pures Appl. (9), 58 (1979), 137.   Google Scholar

[9]

V. S. Buslaev and S. B. Levin, Asymptotic behavior of the eigenfunctions of the many-particle Schrödinger operator. I. One-dimensional particles,, in, 225 (2008), 55.   Google Scholar

[10]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights,, Compositio Math., 53 (1984), 259.   Google Scholar

[11]

F. Catrina and Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence), and symmetry of extremal functions,, Comm. Pure Appl. Math., 54 (2001), 229.  doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I.  Google Scholar

[12]

J. Chabrowski, A. Szulkin and M. Willem, Schrödinger equation with multiparticle potential and critical nonlinearity,, Topol. Meth. Nonl. Anal., 34 (2009), 201.   Google Scholar

[13]

S.-Y. A. Chang, Conformal invariants and partial differential equations,, Bull. Amer. Math. Soc. (N.S.), 42 (2005), 365.  doi: 10.1090/S0273-0979-05-01058-X.  Google Scholar

[14]

J. Chen, Multiple positive solutions for a semilinear equation with prescribed singularity,, J. Math. Anal. Appl., 305 (2005), 140.  doi: 10.1016/j.jmaa.2004.10.057.  Google Scholar

[15]

T. Duyckaerts, Inégalités de résolvante pour l'opérateur de Schrödinger avec potentiel multipolaire critique,, Bulletin Bull. Soc. Math. France, 134 (2006), 201.   Google Scholar

[16]

H. Egnell, Elliptic boundary value problems with singular coefficients and critical nonlinearities,, Indiana Univ. Math. J., 38 (1989), 235.  doi: 10.1512/iumj.1989.38.38012.  Google Scholar

[17]

V. Felli, A. Ferrero and S. Terracini, Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential,, Journal of the European Mathematical Society, 13 (2011), 119.  doi: 10.4171/JEMS/246.  Google Scholar

[18]

V. Felli, A. Ferrero and S. Terracini, A note on local asymptotics of solutions to singular elliptic equations via monotonicity methods,, Milan J. Math., (2012), 00032.   Google Scholar

[19]

V. Felli, E. M. Marchini and S. Terracini, On Schrödinger operators with multipolar inverse-square potentials,, Journal of Functional Analysis, 250 (2007), 265.  doi: 10.1016/j.jfa.2006.10.019.  Google Scholar

[20]

V. Felli, E. M. Marchini and S. Terracini, On the behavior of solutions to Schrödinger equations with dipole type potentials near the singularity,, Discrete Contin. Dynam. Systems, 21 (2008), 91.  doi: 10.3934/dcds.2008.21.91.  Google Scholar

[21]

V. Felli, E. M. Marchini and S. Terracini, On Schrödinger operators with multisingular inverse-square anisotropic potentials,, Indiana Univ. Math. Journal, 58 (2009), 617.  doi: 10.1512/iumj.2009.58.3471.  Google Scholar

[22]

V. Felli and M. Schneider, A note on regularity of solutions to degenerate elliptic equations ofCaffarelli-Kohn-Nirenberg type,, Adv. Nonlinear Stud., 3 (2003), 431.   Google Scholar

[23]

V. Felli and S. Terracini, Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity,, Comm. Partial Differential Equations, 31 (2006), 469.  doi: 10.1080/03605300500394439.  Google Scholar

[24]

A. Ferrero and F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations,, J. Differential Equations, 177 (2001), 494.  doi: 10.1006/jdeq.2000.3999.  Google Scholar

[25]

J. García Azorero and I. Peral Alonso, Hardy Inequalities and some critical elliptic and parabolic problems,, J. Diff. Equations, 144 (1998), 441.  doi: 10.1006/jdeq.1997.3375.  Google Scholar

[26]

N. Garofalo and F.-H. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation,, Indiana Univ. Math. J., 35 (1986), 245.  doi: 10.1512/iumj.1986.35.35015.  Google Scholar

[27]

M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev and J. Tidblom, Many-particle Hardy inequalities,, J. Lond. Math. Soc. (2), 77 (2008), 99.  doi: 10.1112/jlms/jdm091.  Google Scholar

[28]

W. Hunziker and I. Sigal, The quantum $N$-body problem,, J. Math. Phys., 41 (2000), 3448.  doi: 10.1063/1.533319.  Google Scholar

[29]

E. Jannelli, The role played by space dimension in elliptic critical problems,, J. Differential Equations, 156 (1999), 407.  doi: 10.1006/jdeq.1998.3589.  Google Scholar

[30]

M. Lesch, "Operators of Fuchs Type, Conical Singularities, and Asymptotic Methods,", Teubner Texts in Mathematics, 136 (1997).   Google Scholar

[31]

E. H. Lieb and W. E. Thirring, Gravitational collapse in quantum mechanics with relativistic kinetic energy,, Ann. Physics, 155 (1984), 494.  doi: 10.1016/0003-4916(84)90010-1.  Google Scholar

[32]

G. Mancini, I. Fabbri and K. Sandeep, Classification of solutions of a critical Hardy-Sobolev operator,, J. Differential Equations, 224 (2006), 258.  doi: 10.1016/j.jde.2005.07.001.  Google Scholar

[33]

V. G. Maz'ja, "Sobolev Spaces,", Springer Series in Soviet Mathematics, (1985).   Google Scholar

[34]

R. Mazzeo, Elliptic theory of differential edge operators. I,, Comm. Partial Differential Equations, 16 (1991), 1615.  doi: 10.1080/03605309108820815.  Google Scholar

[35]

R. Mazzeo, Regularity for the singular Yamabe problem,, Indiana Univ. Math. J., 40 (1991), 1277.  doi: 10.1512/iumj.1991.40.40057.  Google Scholar

[36]

R. Musina, Ground state solutions of a critical problem involving cylindrical weights,, Nonlin. Anal., 68 (2008), 3972.  doi: 10.1016/j.na.2007.04.034.  Google Scholar

[37]

Y. Pinchover, On positive Liouville theorems and asymptotic behavior of solutions of Fuchsian type elliptic operators,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 313.   Google Scholar

[38]

P. Pucci and J. Serrin, A general variational identity,, Indiana Univ. Math. J., 35 (1986), 681.  doi: 10.1512/iumj.1986.35.35036.  Google Scholar

[39]

S. Secchi, D. Smets and M. Willem, Remarks on a Hardy-Sobolev inequality,, C. R. Math. Acad. Sci. Paris, 336 (2003), 811.  doi: 10.1016/S1631-073X(03)00202-4.  Google Scholar

[40]

D. Smets, Nonlinear Schrödinger equations withHardy potential and critical nonlinearities,, Trans. AMS, 357 (2005), 2909.  doi: 10.1090/S0002-9947-04-03769-9.  Google Scholar

[41]

M. Struwe, "Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", Springer-Verlag, (1990).   Google Scholar

[42]

S. Terracini, On positive entire solutions to a class of equations with singular coefficient and critical exponent,, Adv. Diff. Equa., 1 (1996), 241.   Google Scholar

[43]

Z.-Q. Wang and M. Zhu, Hardy inequalities with boundary terms,, Electron. J. Differential Equations, 2003 ().   Google Scholar

[44]

T. H. Wolff, A property of measures in $\R^ N$ and an application to unique continuation,, Geom. Funct. Anal., 2 (1992), 225.   Google Scholar

show all references

References:
[1]

B. Abdellaoui, V. Felli and I. Peral, Some remarks on systems of elliptic equations doubly critical in the whole $\R^N$,, Calc. Var. Partial Differential Equations, 34 (2009), 97.  doi: 10.1007/s00526-008-0177-2.  Google Scholar

[2]

F. J. Almgren, Jr., $Q$ valued functions minimizing Dirichlet's integral and the regularity of area minimizing rectifiable currents up to codimension two,, Bull. Amer. Math. Soc. (N. S.), 8 (1983), 327.   Google Scholar

[3]

M. Badiale, V. Benci and S. Rolando, A nonlinear elliptic equation with singular potential and applications to nonlinear field equations,, J. Eur. Math. Soc., 9 (2007), 355.   Google Scholar

[4]

M. Badiale and S. Rolando, Elliptic problems with singular potential and double-power nonlinearity,, Mediterr. J. Math., 2 (2005), 417.   Google Scholar

[5]

M. Badiale and G. Tarantello, A Sobolev-Hardy inequalitywith applications to a nonlinear elliptic equation arising inastrophysics,, Arch. Ration. Mech. Anal., 163 (2002), 259.  doi: 10.1007/s002050200201.  Google Scholar

[6]

H. Baum and A. Juhl, "Conformal Differential Geometry. Q-Curvature and Conformal Holonomy,", Oberwolfach Seminars, 40 (2010).   Google Scholar

[7]

R. Bosi, J. Dolbeault and M. J. Esteban, Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators,, Commun. Pure Appl. Anal., 7 (2008), 533.   Google Scholar

[8]

H. Brézis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials,, J. Math. Pures Appl. (9), 58 (1979), 137.   Google Scholar

[9]

V. S. Buslaev and S. B. Levin, Asymptotic behavior of the eigenfunctions of the many-particle Schrödinger operator. I. One-dimensional particles,, in, 225 (2008), 55.   Google Scholar

[10]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights,, Compositio Math., 53 (1984), 259.   Google Scholar

[11]

F. Catrina and Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence), and symmetry of extremal functions,, Comm. Pure Appl. Math., 54 (2001), 229.  doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I.  Google Scholar

[12]

J. Chabrowski, A. Szulkin and M. Willem, Schrödinger equation with multiparticle potential and critical nonlinearity,, Topol. Meth. Nonl. Anal., 34 (2009), 201.   Google Scholar

[13]

S.-Y. A. Chang, Conformal invariants and partial differential equations,, Bull. Amer. Math. Soc. (N.S.), 42 (2005), 365.  doi: 10.1090/S0273-0979-05-01058-X.  Google Scholar

[14]

J. Chen, Multiple positive solutions for a semilinear equation with prescribed singularity,, J. Math. Anal. Appl., 305 (2005), 140.  doi: 10.1016/j.jmaa.2004.10.057.  Google Scholar

[15]

T. Duyckaerts, Inégalités de résolvante pour l'opérateur de Schrödinger avec potentiel multipolaire critique,, Bulletin Bull. Soc. Math. France, 134 (2006), 201.   Google Scholar

[16]

H. Egnell, Elliptic boundary value problems with singular coefficients and critical nonlinearities,, Indiana Univ. Math. J., 38 (1989), 235.  doi: 10.1512/iumj.1989.38.38012.  Google Scholar

[17]

V. Felli, A. Ferrero and S. Terracini, Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential,, Journal of the European Mathematical Society, 13 (2011), 119.  doi: 10.4171/JEMS/246.  Google Scholar

[18]

V. Felli, A. Ferrero and S. Terracini, A note on local asymptotics of solutions to singular elliptic equations via monotonicity methods,, Milan J. Math., (2012), 00032.   Google Scholar

[19]

V. Felli, E. M. Marchini and S. Terracini, On Schrödinger operators with multipolar inverse-square potentials,, Journal of Functional Analysis, 250 (2007), 265.  doi: 10.1016/j.jfa.2006.10.019.  Google Scholar

[20]

V. Felli, E. M. Marchini and S. Terracini, On the behavior of solutions to Schrödinger equations with dipole type potentials near the singularity,, Discrete Contin. Dynam. Systems, 21 (2008), 91.  doi: 10.3934/dcds.2008.21.91.  Google Scholar

[21]

V. Felli, E. M. Marchini and S. Terracini, On Schrödinger operators with multisingular inverse-square anisotropic potentials,, Indiana Univ. Math. Journal, 58 (2009), 617.  doi: 10.1512/iumj.2009.58.3471.  Google Scholar

[22]

V. Felli and M. Schneider, A note on regularity of solutions to degenerate elliptic equations ofCaffarelli-Kohn-Nirenberg type,, Adv. Nonlinear Stud., 3 (2003), 431.   Google Scholar

[23]

V. Felli and S. Terracini, Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity,, Comm. Partial Differential Equations, 31 (2006), 469.  doi: 10.1080/03605300500394439.  Google Scholar

[24]

A. Ferrero and F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations,, J. Differential Equations, 177 (2001), 494.  doi: 10.1006/jdeq.2000.3999.  Google Scholar

[25]

J. García Azorero and I. Peral Alonso, Hardy Inequalities and some critical elliptic and parabolic problems,, J. Diff. Equations, 144 (1998), 441.  doi: 10.1006/jdeq.1997.3375.  Google Scholar

[26]

N. Garofalo and F.-H. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation,, Indiana Univ. Math. J., 35 (1986), 245.  doi: 10.1512/iumj.1986.35.35015.  Google Scholar

[27]

M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev and J. Tidblom, Many-particle Hardy inequalities,, J. Lond. Math. Soc. (2), 77 (2008), 99.  doi: 10.1112/jlms/jdm091.  Google Scholar

[28]

W. Hunziker and I. Sigal, The quantum $N$-body problem,, J. Math. Phys., 41 (2000), 3448.  doi: 10.1063/1.533319.  Google Scholar

[29]

E. Jannelli, The role played by space dimension in elliptic critical problems,, J. Differential Equations, 156 (1999), 407.  doi: 10.1006/jdeq.1998.3589.  Google Scholar

[30]

M. Lesch, "Operators of Fuchs Type, Conical Singularities, and Asymptotic Methods,", Teubner Texts in Mathematics, 136 (1997).   Google Scholar

[31]

E. H. Lieb and W. E. Thirring, Gravitational collapse in quantum mechanics with relativistic kinetic energy,, Ann. Physics, 155 (1984), 494.  doi: 10.1016/0003-4916(84)90010-1.  Google Scholar

[32]

G. Mancini, I. Fabbri and K. Sandeep, Classification of solutions of a critical Hardy-Sobolev operator,, J. Differential Equations, 224 (2006), 258.  doi: 10.1016/j.jde.2005.07.001.  Google Scholar

[33]

V. G. Maz'ja, "Sobolev Spaces,", Springer Series in Soviet Mathematics, (1985).   Google Scholar

[34]

R. Mazzeo, Elliptic theory of differential edge operators. I,, Comm. Partial Differential Equations, 16 (1991), 1615.  doi: 10.1080/03605309108820815.  Google Scholar

[35]

R. Mazzeo, Regularity for the singular Yamabe problem,, Indiana Univ. Math. J., 40 (1991), 1277.  doi: 10.1512/iumj.1991.40.40057.  Google Scholar

[36]

R. Musina, Ground state solutions of a critical problem involving cylindrical weights,, Nonlin. Anal., 68 (2008), 3972.  doi: 10.1016/j.na.2007.04.034.  Google Scholar

[37]

Y. Pinchover, On positive Liouville theorems and asymptotic behavior of solutions of Fuchsian type elliptic operators,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 313.   Google Scholar

[38]

P. Pucci and J. Serrin, A general variational identity,, Indiana Univ. Math. J., 35 (1986), 681.  doi: 10.1512/iumj.1986.35.35036.  Google Scholar

[39]

S. Secchi, D. Smets and M. Willem, Remarks on a Hardy-Sobolev inequality,, C. R. Math. Acad. Sci. Paris, 336 (2003), 811.  doi: 10.1016/S1631-073X(03)00202-4.  Google Scholar

[40]

D. Smets, Nonlinear Schrödinger equations withHardy potential and critical nonlinearities,, Trans. AMS, 357 (2005), 2909.  doi: 10.1090/S0002-9947-04-03769-9.  Google Scholar

[41]

M. Struwe, "Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", Springer-Verlag, (1990).   Google Scholar

[42]

S. Terracini, On positive entire solutions to a class of equations with singular coefficient and critical exponent,, Adv. Diff. Equa., 1 (1996), 241.   Google Scholar

[43]

Z.-Q. Wang and M. Zhu, Hardy inequalities with boundary terms,, Electron. J. Differential Equations, 2003 ().   Google Scholar

[44]

T. H. Wolff, A property of measures in $\R^ N$ and an application to unique continuation,, Geom. Funct. Anal., 2 (1992), 225.   Google Scholar

[1]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[2]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[3]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[4]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[5]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[6]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[7]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[8]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[9]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[10]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[11]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[12]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[13]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[14]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[15]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[16]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[17]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[18]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[19]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[20]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (6)

[Back to Top]