\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Characterization of turing diffusion-driven instability on evolving domains

Abstract Related Papers Cited by
  • In this paper we establish a general theoretical framework for Turing diffusion-driven instability for reaction-diffusion systems on time-dependent evolving domains. The main result is that Turing diffusion-driven instability for reaction-diffusion systems on evolving domains is characterised by Lyapunov exponents of the evolution family associated with the linearised system (obtained by linearising the original system along a spatially independent solution). This framework allows for the inclusion of the analysis of the long-time behavior of the solutions of reaction-diffusion systems. Applications to two special types of evolving domains are considered: (i) time-dependent domains which evolve to a final limiting fixed domain and (ii) time-dependent domains which are eventually time periodic. Reaction-diffusion systems have been widely proposed as plausible mechanisms for pattern formation in morphogenesis.
    Mathematics Subject Classification: Primary: 35K55, 35K57; Secondary: 37B55, 37C60, 37C75.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Amann, Existence and regularity for semilinear parabolic evolution equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 11 (1984), 593-676.

    [2]

    V. Castets, E. Dulos, J. Boissonade and P. De Kepper, Experimental evidence of a sustained Turing-type equilibrium chemical pattern, Phys. Rev. Lett., 64 (1990), 2953-2956.doi: 10.1103/PhysRevLett.64.2953.

    [3]

    M. Chaplain, A. J. Ganesh and I. G. Graham, Spatio-temporal pattern formation on spherical surfaces:Numerical simulation and application to solid tumor growth, J. Math. Biol., 42 (2001), 387-423.doi: 10.1007/s002850000067.

    [4]

    C. Chicone and Y. Latushkin, "Evolution Semigroups in Dynamical Systems and Differential Equations,'' Mathematical Surveys and Monographs, 70, American Mathematical Society, Providence, RI, 1999.

    [5]

    E. J. Crampin, E. A. Gaffney and P. K. Maini, Reaction and diffusion on growing domains: Scenarios for robust pattern formation, Bull. Math. Biol., 61 (1999), 1093-1120.doi: 10.1006/bulm.1999.0131.

    [6]

    E. J. Crampin, W. W. Hackborn and P. K. Maini, Pattern formation in reaction-diffusion models with nonuniform domain growth, Bull. Math. Biol., 64 (2002), 746-769.doi: 10.1006/bulm.2002.0295.

    [7]

    D. Daners, Perturbation of semi-linear evolution equations under weak assumptions at initial time, J. Diff. Eq., 210 (2005), 352-382.doi: 10.1016/j.jde.2004.08.004.

    [8]

    R. Denk, M. Hieber and J. Prüss, "$R$-Boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type,'' Mem. Amer. Math. Soc., 166 (2003), viii+114 pp.

    [9]

    R. Denk, M. Hieber and J. Prüss, "Optimal Lp-Lq-Regularity for Parabolic Problems with Inhomogeneous Boundary Data,'' Konstanzer Schriften in Mathematik und Informatik, Nr. 205, April 2005.

    [10]

    L. Edelstein-Keshet, "Mathematical Models in Biology,'' The Random House/Birkhäuser Mathematics Series, Random House, Inc., New York, 1988.

    [11]

    A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.doi: 10.1007/BF00289234.

    [12]

    G. H. Golub and C. F. Van Loan, "Matrix Computations,'' JHU Press, 1996.

    [13]

    S. Kondo and R. Asai, A reaction-diffusion wave on the skin of the marine anglefish, Pomacanthus, Nature, 376 (1995), 765-768.doi: 10.1038/376765a0.

    [14]

    S. S. Liaw, C. C. Yang, R. T. Liu and J. T. Hong, Turing model for the patterns of lady beetles, Phys. Rev. E., 64 (2001), 041909-1-041909-5.doi: 10.1103/PhysRevE.64.041909.

    [15]

    Y. Latushkin, J. Prüss and R. Schnaubelt, Stable and unstable manifolds for quasilinear parabolic systems with fully nonlinear boundary conditions, J. Evol. Eq., 6 (2006), 537-576.

    [16]

    A. Madzvamuse, E. A. Gaffney and P. K. Maini, Stability analysis of non-autonomous reaction-diffusion systems: The effects of growing domains, J. Math. Biol., 61 (2010), 133-164.doi: 10.1007/s00285-009-0293-4.

    [17]

    A. Madzvamuse, Turing instability conditions for growing domains with divergence free mesh velocity, Nonlinear Analysis: Theory, Methods and Applications, (2009), e2250-e2257.

    [18]

    A. Madzvamuse, Stability analysis of reaction-diffusion systems with constant coefficients on growing domains, Int J. of Dynamical and Differential Equations, 1 (2008), 250-262.

    [19]

    A. Madzvamuse and P. K. Maini, Velocity-induced numerical solutions of reaction-diffusion systems on fixed and growing domains, J. Comp. Phys., 225 (2007), 100-119.doi: 10.1016/j.jcp.2006.11.022.

    [20]

    A. Madzvamuse, Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains, J. Comp. Phys., 214 (2006), 239-263.doi: 10.1016/j.jcp.2005.09.012.

    [21]

    A. Madzvamuse, A. J. Wathen and P. K. Maini, A moving grid finite element method for the simulation of pattern generation by Turing models on growing domains, J. Sci. Comp., 24 (2005), 247-262.doi: 10.1007/s10915-004-4617-7.

    [22]

    A. Madzvamuse, P. K. Maini and A. J. Wathen, A moving grid finite element method applied to a model biological pattern generator, J. Comp. Phys., 190 (2003), 478-500.doi: 10.1016/S0021-9991(03)00294-8.

    [23]

    P. K. Maini, R. E. Baker and C. M. Chong, The Turing model comes of molecular age, (Invited Perspective) Science, 314 (2006), 1397-1398.doi: 10.1126/science.1136396.

    [24]

    J. Mierczynski and W. ShenSpectral theory for forward nonautonomous parabolic equations and applications, to appear in Fields Inst. Commun.

    [25]

    J. Mierczynski and W. ShenPersistence in forward nonautonomous competitive systems of parabolic equations, submitted.

    [26]

    J. Mierczynksi and W. Shen, "Spectral Theory for Random and Nonautonomous Parabolic Equations and Applications,'' Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 139, CRC Press, Boca Raton, FL, 2008.

    [27]

    J. D. Murray, "Mathematical Biology I and II,'' 3$^rd$ edition, Springer-Verlag, Berlin, 2002.

    [28]

    K. J. Painter, H. G. Othmer and P. K. Maini, Stripe formation in juvenile Pomacanthus explained by a generalized Turing mechanism with chemotaxis, Proc. Natl. Acad. Sci., 96 (1999), 5549.doi: 10.1073/pnas.96.10.5549.

    [29]

    R. G. Plaza, F. Sánchez-Garduño, P. Padilla, R. A. Barrio, and P. K. Maini, The effect of growth and curvature on pattern formation, J. Dynam. and Diff. Eqs., 16 (2004), 1093-1121.doi: 10.1007/s10884-004-7834-8.

    [30]

    I. Prigogine and R. Lefever, Symmetry breaking instabilities in dissipative systems II, J. Chem. Phys., 48 (1968), 1695-1700.doi: 10.1063/1.1668896.

    [31]

    A. M. Oster and P. C. Bressloff, A developmental model of ocular dominance column formation on a growing cortex, Bull. of Math. Biol., 68 (2006), 73-98.doi: 10.1007/s11538-005-9055-7.

    [32]

    Q. Ouyang and H. L. Swinney, Transition from a uniform state to hexagonal and striped Turing patterns, Nature, 352 (1991), 610-612.doi: 10.1038/352610a0.

    [33]

    J. Schnakenberg, Simple chemical reaction systems with limit cycle behaviour, J. Theor. Biol., 81 (1979), 389-400.doi: 10.1016/0022-5193(79)90042-0.

    [34]

    R. Schnaubelt, Asymptotic behavior of parabolic nonautonomous evolution equations, in "Functional Analytic Methodsfor Evolution Equations," Lecture Notes in Mathematics, 1855, Springer, Berlin, (2004), 401-472.

    [35]

    Y. Shiferaw and A. Karma, Turing instability mediated by voltage and calcium diffusion in paced cardiac cells, PNAS, 103 (2006), 5670-5675.doi: 10.1073/pnas.0511061103.

    [36]

    S. Sick, S. Reinker, J. Timmer and T. Schlake, WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism, Science, 314 (2006), 1447-1450.doi: 10.1126/science.1130088.

    [37]

    L. Solnica-Krezel, Vertebrate development: Taming the nodal waves, Curr Biol., 13 (2003), R7-9.doi: 10.1016/S0960-9822(02)01378-7.

    [38]

    A. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. Lond. B, 237 (1952), 37-72.doi: 10.1098/rstb.1952.0012.

    [39]

    C. Varea, J. L. Aragón and R. A. Barrio, Confined Turing patterns in growing systems, Phys. Rev. E., 60 (1999), 4588-4592.doi: 10.1103/PhysRevE.60.4588.

    [40]

    C. Venkataraman, O. Lakkis and A. Madzvamuse, Global existence for semilinear reaction-diffusion systems on evolving domains, J. Math. Biol., 64 (2010), 41-67.doi: 10.1007/s00285-011-0404-x.

    [41]

    P. Weidemaier, Local existence for parabolic problems with fully nonlinear boundary conditions; an $L_p$-approach, Annali di Matematica Pura and Applicata (4), 160 (1991), 207-222.doi: 10.1007/BF01764128.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(131) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return