• Previous Article
    Multiplicity of solutions of variational systems involving $\phi$-Laplacians with singular $\phi$ and periodic nonlinearities
  • DCDS Home
  • This Issue
  • Next Article
    Characterization of turing diffusion-driven instability on evolving domains
November  2012, 32(11): 4001-4014. doi: 10.3934/dcds.2012.32.4001

Blow-up phenomena in reaction-diffusion systems

1. 

Dipartimento di Matematica e Informatica, Università di Cagliari, 09123, Italy, Italy

Received  December 2010 Revised  September 2011 Published  June 2012

In this paper we deal with the blow-up phenomena of solutions to two different classes of reaction-diffusion systems coupled through nonlinearities with nonlinear boundary conditions. By using a differential inequality technique, we derive upper and lower bounds for the blow-up time, if blow-up occurs. Moreover by introducing suitable auxiliary functions, we give sufficient conditions on data in order to obtain global existence.
Citation: Monica Marras, Stella Vernier Piro. Blow-up phenomena in reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4001-4014. doi: 10.3934/dcds.2012.32.4001
References:
[1]

J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinearevolution equations,, Quart. J. Math. Oxford, (1977), 473.  doi: 10.1093/qmath/28.4.473.  Google Scholar

[2]

C. Bandle and H. Brunner, Blow-up in diffusion equations,, A survey, 97 (1998), 3.   Google Scholar

[3]

M. Chipot, M. Fila and P. Quittner, Stationary solutions, blow-up and convergence to stationary solutions for semilinear parabolic equations with nonlinear boundary conditions,, Acta Math.Univ. Comenian. (N.S.), LX (1991).   Google Scholar

[4]

A. A. Lacey, Diffusion models with blow-up,, J.Comput. Appl. Math., 97 (1998), 39.  doi: 10.1016/S0377-0427(98)00105-8.  Google Scholar

[5]

J. López-Gómez, V. Márquez and N. Wolanski, Blow up results and localization of blow up points for the heat equation with a nonlinear boundary condition,, J. Diff. Equ., 92 (1991), 384.  doi: 10.1016/0022-0396(91)90056-F.  Google Scholar

[6]

J. López-Gómez, V. Márquez and N. Wolanski, "Global Behaviour of Positive Solutions to a Semilinear Equation with a Nonlinear Flux Condition,", IMA Preprint Series, 810 (1991).   Google Scholar

[7]

H. Kielhöfer, Halbgruppen und semilineare Anfangs-randwert-probleme,, Manuscripta Math. \textbf{12} (1974), 12 (1974), 121.   Google Scholar

[8]

M. Marras, Bounds for blow-up time in nonlinear parabolic systems under various boundary conditions,, Numer. Funct. Anal. Optim., 32 (2010), 453.   Google Scholar

[9]

L. E. Payne, G. A. Philippin and S. Vernier-Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition I,, Z. Angew. Math. Phys., 61 (2010), 971.  doi: 10.1007/s00033-010-0071-6.  Google Scholar

[10]

L. E. Payne, G. A. Philippin and S. Vernier-Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition II,, Nonlinear Analysis, 73 (2010), 971.  doi: 10.1016/j.na.2010.04.023.  Google Scholar

[11]

L. E. Payne and P. W. Schaefer, Blow-up phenomena for some nonlinear parabolic systems,, Int. J. Pure Appl. Math., 48 (2008), 193.   Google Scholar

[12]

G. A. Philippin and V. Proytcheva, Some remarks on the asymptotic behaviour of the solutions of a class of parabolic problems,, Math.Meth. Appl. Sci., 29 (2006), 297.  doi: 10.1002/mma.679.  Google Scholar

[13]

P. Quittner, On global existence and stationary solutions of two classes of semilinear parabolic equations,, Comm.Math. Univ.Carolinae, 34 (1993), 105.   Google Scholar

[14]

P. Quittner and P. Souplet, "Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States,", Birkh\, (2007).   Google Scholar

[15]

B. Straughan, "Explosive Instabilities in Mechanics,", Springer, (1998).   Google Scholar

[16]

J. L. Vázquez, The problems of blow-up for nonlinear heat equations. Complete blow-up and avalanche formation,, Rend. Mat. Acc. Lincei s. IX, 15 (2004), 281.   Google Scholar

[17]

F. B. Weissler, Local existence and nonexistence for semilinear parabolic equations in $L^p$,, Indiana Univ. Math. J., 29 (1980), 79.  doi: 10.1512/iumj.1980.29.29007.  Google Scholar

[18]

F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation,, Israel J. Math., 38 (1981), 29.  doi: 10.1007/BF02761845.  Google Scholar

show all references

References:
[1]

J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinearevolution equations,, Quart. J. Math. Oxford, (1977), 473.  doi: 10.1093/qmath/28.4.473.  Google Scholar

[2]

C. Bandle and H. Brunner, Blow-up in diffusion equations,, A survey, 97 (1998), 3.   Google Scholar

[3]

M. Chipot, M. Fila and P. Quittner, Stationary solutions, blow-up and convergence to stationary solutions for semilinear parabolic equations with nonlinear boundary conditions,, Acta Math.Univ. Comenian. (N.S.), LX (1991).   Google Scholar

[4]

A. A. Lacey, Diffusion models with blow-up,, J.Comput. Appl. Math., 97 (1998), 39.  doi: 10.1016/S0377-0427(98)00105-8.  Google Scholar

[5]

J. López-Gómez, V. Márquez and N. Wolanski, Blow up results and localization of blow up points for the heat equation with a nonlinear boundary condition,, J. Diff. Equ., 92 (1991), 384.  doi: 10.1016/0022-0396(91)90056-F.  Google Scholar

[6]

J. López-Gómez, V. Márquez and N. Wolanski, "Global Behaviour of Positive Solutions to a Semilinear Equation with a Nonlinear Flux Condition,", IMA Preprint Series, 810 (1991).   Google Scholar

[7]

H. Kielhöfer, Halbgruppen und semilineare Anfangs-randwert-probleme,, Manuscripta Math. \textbf{12} (1974), 12 (1974), 121.   Google Scholar

[8]

M. Marras, Bounds for blow-up time in nonlinear parabolic systems under various boundary conditions,, Numer. Funct. Anal. Optim., 32 (2010), 453.   Google Scholar

[9]

L. E. Payne, G. A. Philippin and S. Vernier-Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition I,, Z. Angew. Math. Phys., 61 (2010), 971.  doi: 10.1007/s00033-010-0071-6.  Google Scholar

[10]

L. E. Payne, G. A. Philippin and S. Vernier-Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition II,, Nonlinear Analysis, 73 (2010), 971.  doi: 10.1016/j.na.2010.04.023.  Google Scholar

[11]

L. E. Payne and P. W. Schaefer, Blow-up phenomena for some nonlinear parabolic systems,, Int. J. Pure Appl. Math., 48 (2008), 193.   Google Scholar

[12]

G. A. Philippin and V. Proytcheva, Some remarks on the asymptotic behaviour of the solutions of a class of parabolic problems,, Math.Meth. Appl. Sci., 29 (2006), 297.  doi: 10.1002/mma.679.  Google Scholar

[13]

P. Quittner, On global existence and stationary solutions of two classes of semilinear parabolic equations,, Comm.Math. Univ.Carolinae, 34 (1993), 105.   Google Scholar

[14]

P. Quittner and P. Souplet, "Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States,", Birkh\, (2007).   Google Scholar

[15]

B. Straughan, "Explosive Instabilities in Mechanics,", Springer, (1998).   Google Scholar

[16]

J. L. Vázquez, The problems of blow-up for nonlinear heat equations. Complete blow-up and avalanche formation,, Rend. Mat. Acc. Lincei s. IX, 15 (2004), 281.   Google Scholar

[17]

F. B. Weissler, Local existence and nonexistence for semilinear parabolic equations in $L^p$,, Indiana Univ. Math. J., 29 (1980), 79.  doi: 10.1512/iumj.1980.29.29007.  Google Scholar

[18]

F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation,, Israel J. Math., 38 (1981), 29.  doi: 10.1007/BF02761845.  Google Scholar

[1]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[2]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[3]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[4]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[5]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[6]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[7]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[8]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[9]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[10]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[11]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[12]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[13]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[14]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[15]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[16]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[17]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[18]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[19]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[20]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]