November  2012, 32(11): 4015-4026. doi: 10.3934/dcds.2012.32.4015

Multiplicity of solutions of variational systems involving $\phi$-Laplacians with singular $\phi$ and periodic nonlinearities

1. 

Institut de Recherche en Mathématique et Physique, Université Catholique de Louvain, chemin du Cyclotron, 2, B-1348 Louvain-la-Neuve, Belgium

Received  April 2011 Revised  June 2011 Published  June 2012

Using a Lusternik-Schnirelman type multiplicity result for some indefinite functionals due to Szulkin, the existence of at least $n+1$ geometrically distinct T-periodic solutions is proved for the relativistic-type Lagrangian system $$(\phi(q'))' + \nabla_qF(t,q) = h(t),$$ where $\phi$ is an homeomorphism of the open ball $B_a \subset \mathbb{R}n$ onto $\mathbb{R}n$ such that $\phi(0) = 0$ and $\phi = \nabla \Phi$, $F$ is $T_j$-periodic in each variable $q_j$ and $h \in L^s(0,T;\mathbb{R}n)$ $(s > 1)$ has mean value zero. Application is given to the coupled pendulum equations $$\left(\frac{q'_j}{\sqrt{1 - \|q\|^2}}\right)' + A_j \sin q_j = h_j(t) \quad (j = 1,\ldots,n).$$ Similar results are obtained for the radial solutions of the homogeneous Neumann problem on an annulus in $\mathbb{R}n$ centered at $0$ associated to systems of the form $$\nabla \cdot \left(\frac{\nabla w_i}{\sqrt{1 - \sum_{j=1}^n \|\nabla w_j\|^2}}\right) + \partial_{w_j} G(\|x\|,w) = h_i(\|x\|), \quad (i = 1,\ldots,n),$$ involving the extrinsic mean curvature operator in a Minkovski space.
Citation: Jean Mawhin. Multiplicity of solutions of variational systems involving $\phi$-Laplacians with singular $\phi$ and periodic nonlinearities. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 4015-4026. doi: 10.3934/dcds.2012.32.4015
References:
[1]

C. Bereanu, P. Jebelean and J. Mawhin, Non-homogeneous boundary value problems for ordinary and partial differential equations involving singular $\phi$-Laplacians, Matemática Contemporânea, 36 (2009), 51-65.

[2]

C. Bereanu, P. Jebelean and J. Mawhin, Periodic solutions of pendulum-like perturbations of singular and bounded $\phi$-Laplacians, J. Dynamics Differential Equations, 22 (2010), 463-471. doi: 10.1007/s10884-010-9172-3.

[3]

C. Bereanu, P. Jebelean and J. Mawhin, Variational methods for nonlinear perturbations of singular $\phi$-Laplacian, Rendiconti Lincei: Matematica e Applicazioni, 22 (2011), 89-111. doi: 10.4171/RLM/589.

[4]

C. Bereanu, P. Jebelean and J. Mawhin, Radial solutions for Neumann problems with $\phi$-Laplacians and pendulum-like nonlinearities, Discrete Continuous Dynamical Systems, 28 (2010), 637-648.

[5]

C. Bereanu, P. Jebelean and J. Mawhin, Radial solutions of Neumann problems involving mean extrinsic curvature and periodic nonlinearities, Calculus Variations Partial Differential Equations, to appear.

[6]

C. Bereanu and P. Torres, Existence of at least two periodic solutions of the forced relativistic pendulum, Proc. Amer. Math. Soc., to appear.

[7]

H. Brezis and J. Mawhin, Periodic solutions of the forced relativistic pendulum, Differential Integral Equations, 23 (2010), 801-810.

[8]

H. Brezis and J. Mawhin, Periodic solutions of Lagrangian systems of relativistic oscillators, Communic. Applied Anal., 15 (2011), 235-250.

[9]

K.-C. Chang, On the periodic nonlinearity and the multiplicity of solutions, Nonlinear Anal., 13 (1989), 527-537. doi: 10.1016/0362-546X(89)90062-X.

[10]

G. Fournier, D. Lupo, M. Ramos and M. Willem, Limit relative category and critical point theory, Dynamics Reported, 3 (1994), 1-24.

[11]

G. Fournier and M. Willem, Multiple solutions of the forced double pendulum equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 259-281.

[12]

G. Fournier and M. Willem, Relative category and the calculus of variations, in "Variational Methods" (Paris, 1988) (eds. H. Berestycki, J. M. Coron and I. Ekeland), Progr. Nonlinear Differential Equations Appl., 4, Birkhäuser Boston, Boston, MA, (1990), 95-104.

[13]

J. Q. Liu, A generalized saddle point theorem, J. Differential Equations, 82 (1989), 372-385.

[14]

J. Mawhin, Forced second order conservative systems with periodic nonlinearity, Ann. Inst. Henri-Poincaré Anal. Non Linéaire, 6 (1989), 415-434.

[15]

J. Mawhin and M. Willem, Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations, J. Differential Equations, 52 (1984), 264-287. doi: 10.1016/0022-0396(84)90180-3.

[16]

J. Mawhin and M. Willem, Variational methods and boundary value problems for vector second order differential equations and applications to the pendulum equation, in "Nonlinear Anal. and Optimization" (Bologna, 1982) (ed. C. Vinti), Lecture Notes in Math., 1107, Springer, Berlin (1984), 181-192.

[17]

J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems," Springer-Verlag, New York, 1989.

[18]

R. S. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology, 5 (1966), 115-132.

[19]

P. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations," CBMS Regional Conf. Ser. in Math., 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the Amer. Math. Soc., Providence, RI, 1986.

[20]

P. Rabinowitz, On a class of functionals invariant under a $Z_n$ action, Trans. Amer. Math. Soc., 310 (1988), 303-311. doi: 10.1090/S0002-9947-1988-0965755-5.

[21]

M. Reeken, Stability of critical points under small perturbations. I: Topological theory, Manuscripta Math., 7 (1972), 387-411.

[22]

J. T. Schwartz, Nonlinear Functional Analysis, Notes by H. Fattorini, R. Nirenberg and H. Porta, with an additional chapter by Hermann Karcher, Notes on Mathematics and its Applications, Gordon and Breach Science Publishers, New York-London-Paris, 1969.

[23]

A. Szulkin, A relative category and applications to critical point theory for strongly indefinite functionals, Nonlinear Anal., 15 (1990), 725-739. doi: 10.1016/0362-546X(90)90089-Y.

show all references

References:
[1]

C. Bereanu, P. Jebelean and J. Mawhin, Non-homogeneous boundary value problems for ordinary and partial differential equations involving singular $\phi$-Laplacians, Matemática Contemporânea, 36 (2009), 51-65.

[2]

C. Bereanu, P. Jebelean and J. Mawhin, Periodic solutions of pendulum-like perturbations of singular and bounded $\phi$-Laplacians, J. Dynamics Differential Equations, 22 (2010), 463-471. doi: 10.1007/s10884-010-9172-3.

[3]

C. Bereanu, P. Jebelean and J. Mawhin, Variational methods for nonlinear perturbations of singular $\phi$-Laplacian, Rendiconti Lincei: Matematica e Applicazioni, 22 (2011), 89-111. doi: 10.4171/RLM/589.

[4]

C. Bereanu, P. Jebelean and J. Mawhin, Radial solutions for Neumann problems with $\phi$-Laplacians and pendulum-like nonlinearities, Discrete Continuous Dynamical Systems, 28 (2010), 637-648.

[5]

C. Bereanu, P. Jebelean and J. Mawhin, Radial solutions of Neumann problems involving mean extrinsic curvature and periodic nonlinearities, Calculus Variations Partial Differential Equations, to appear.

[6]

C. Bereanu and P. Torres, Existence of at least two periodic solutions of the forced relativistic pendulum, Proc. Amer. Math. Soc., to appear.

[7]

H. Brezis and J. Mawhin, Periodic solutions of the forced relativistic pendulum, Differential Integral Equations, 23 (2010), 801-810.

[8]

H. Brezis and J. Mawhin, Periodic solutions of Lagrangian systems of relativistic oscillators, Communic. Applied Anal., 15 (2011), 235-250.

[9]

K.-C. Chang, On the periodic nonlinearity and the multiplicity of solutions, Nonlinear Anal., 13 (1989), 527-537. doi: 10.1016/0362-546X(89)90062-X.

[10]

G. Fournier, D. Lupo, M. Ramos and M. Willem, Limit relative category and critical point theory, Dynamics Reported, 3 (1994), 1-24.

[11]

G. Fournier and M. Willem, Multiple solutions of the forced double pendulum equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 259-281.

[12]

G. Fournier and M. Willem, Relative category and the calculus of variations, in "Variational Methods" (Paris, 1988) (eds. H. Berestycki, J. M. Coron and I. Ekeland), Progr. Nonlinear Differential Equations Appl., 4, Birkhäuser Boston, Boston, MA, (1990), 95-104.

[13]

J. Q. Liu, A generalized saddle point theorem, J. Differential Equations, 82 (1989), 372-385.

[14]

J. Mawhin, Forced second order conservative systems with periodic nonlinearity, Ann. Inst. Henri-Poincaré Anal. Non Linéaire, 6 (1989), 415-434.

[15]

J. Mawhin and M. Willem, Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations, J. Differential Equations, 52 (1984), 264-287. doi: 10.1016/0022-0396(84)90180-3.

[16]

J. Mawhin and M. Willem, Variational methods and boundary value problems for vector second order differential equations and applications to the pendulum equation, in "Nonlinear Anal. and Optimization" (Bologna, 1982) (ed. C. Vinti), Lecture Notes in Math., 1107, Springer, Berlin (1984), 181-192.

[17]

J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems," Springer-Verlag, New York, 1989.

[18]

R. S. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology, 5 (1966), 115-132.

[19]

P. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations," CBMS Regional Conf. Ser. in Math., 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the Amer. Math. Soc., Providence, RI, 1986.

[20]

P. Rabinowitz, On a class of functionals invariant under a $Z_n$ action, Trans. Amer. Math. Soc., 310 (1988), 303-311. doi: 10.1090/S0002-9947-1988-0965755-5.

[21]

M. Reeken, Stability of critical points under small perturbations. I: Topological theory, Manuscripta Math., 7 (1972), 387-411.

[22]

J. T. Schwartz, Nonlinear Functional Analysis, Notes by H. Fattorini, R. Nirenberg and H. Porta, with an additional chapter by Hermann Karcher, Notes on Mathematics and its Applications, Gordon and Breach Science Publishers, New York-London-Paris, 1969.

[23]

A. Szulkin, A relative category and applications to critical point theory for strongly indefinite functionals, Nonlinear Anal., 15 (1990), 725-739. doi: 10.1016/0362-546X(90)90089-Y.

[1]

Cristian Bereanu, Petru Jebelean, Jean Mawhin. Radial solutions for Neumann problems with $\phi$-Laplacians and pendulum-like nonlinearities. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 637-648. doi: 10.3934/dcds.2010.28.637

[2]

J. Ángel Cid, Pedro J. Torres. On the existence and stability of periodic solutions for pendulum-like equations with friction and $\phi$-Laplacian. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 141-152. doi: 10.3934/dcds.2013.33.141

[3]

Jean Mawhin. Periodic solutions of second order Lagrangian difference systems with bounded or singular $\phi$-Laplacian and periodic potential. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1065-1076. doi: 10.3934/dcdss.2013.6.1065

[4]

Feng Wang, Jifeng Chu, Zaitao Liang. Prevalence of stable periodic solutions in the forced relativistic pendulum equation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4579-4594. doi: 10.3934/dcdsb.2018177

[5]

R. Kannan, S. Seikkala. Existence of solutions to some Phi-Laplacian boundary value problems. Conference Publications, 2001, 2001 (Special) : 211-217. doi: 10.3934/proc.2001.2001.211

[6]

D. Motreanu, Donal O'Regan, Nikolaos S. Papageorgiou. A unified treatment using critical point methods of the existence of multiple solutions for superlinear and sublinear Neumann problems. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1791-1816. doi: 10.3934/cpaa.2011.10.1791

[7]

Monica Musso, Donato Passaseo. Multiple solutions of Neumann elliptic problems with critical nonlinearity. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 301-320. doi: 10.3934/dcds.1999.5.301

[8]

V. Barbu. Periodic solutions to unbounded Hamiltonian system. Discrete and Continuous Dynamical Systems, 1995, 1 (2) : 277-283. doi: 10.3934/dcds.1995.1.277

[9]

Alberto Cabada, J. Ángel Cid. Heteroclinic solutions for non-autonomous boundary value problems with singular $\Phi$-Laplacian operators. Conference Publications, 2009, 2009 (Special) : 118-122. doi: 10.3934/proc.2009.2009.118

[10]

Juntao Sun, Jifeng Chu, Zhaosheng Feng. Homoclinic orbits for first order periodic Hamiltonian systems with spectrum point zero. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3807-3824. doi: 10.3934/dcds.2013.33.3807

[11]

Stefano Marò. Relativistic pendulum and invariant curves. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1139-1162. doi: 10.3934/dcds.2015.35.1139

[12]

Tianqing An, Zhi-Qiang Wang. Periodic solutions of Hamiltonian systems with anisotropic growth. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1069-1082. doi: 10.3934/cpaa.2010.9.1069

[13]

Alessandro Fonda, Andrea Sfecci. Multiple periodic solutions of Hamiltonian systems confined in a box. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1425-1436. doi: 10.3934/dcds.2017059

[14]

Roman Srzednicki. On periodic solutions in the Whitney's inverted pendulum problem. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2127-2141. doi: 10.3934/dcdss.2019137

[15]

J. Ángel Cid, Pedro J. Torres. Solvability for some boundary value problems with $\phi$-Laplacian operators. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 727-732. doi: 10.3934/dcds.2009.23.727

[16]

E. N. Dancer, Zhitao Zhang. Critical point, anti-maximum principle and semipositone p-laplacian problems. Conference Publications, 2005, 2005 (Special) : 209-215. doi: 10.3934/proc.2005.2005.209

[17]

Francesca Papalini. Strongly nonlinear multivalued systems involving singular $\Phi$-Laplacian operators. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1025-1040. doi: 10.3934/cpaa.2010.9.1025

[18]

Xiying Sun, Qihuai Liu, Dingbian Qian, Na Zhao. Infinitely many subharmonic solutions for nonlinear equations with singular $ \phi $-Laplacian. Communications on Pure and Applied Analysis, 2020, 19 (1) : 279-292. doi: 10.3934/cpaa.20200015

[19]

Anna Capietto, Walter Dambrosio, Tiantian Ma, Zaihong Wang. Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1835-1856. doi: 10.3934/dcds.2013.33.1835

[20]

Marissa Condon, Alfredo Deaño, Arieh Iserles. On systems of differential equations with extrinsic oscillation. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1345-1367. doi: 10.3934/dcds.2010.28.1345

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (86)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]