Citation: |
[1] |
A. Azevedo, D. Marchesin, B. J. Plohr and K. Zumbrun, Nonuniqueness of solutions of Riemann problems, Zeit. angew. Math. Phys., 47 (1996), 977-998.doi: 10.1007/BF00920046. |
[2] |
C. M. Dafermos, Solution of the Riemann problem for a class of hyperbolic systems of conservation lawsby the viscosity method, Arch. Ration. Mech. Anal., 52 (1973), 1-9.doi: 10.1007/BF00249087. |
[3] |
J. Dodd, Spectral stability of undercompressive shock profile solutions of a modified KdV-Burgers equation, Electron. J. Differential Equations, 2007, no. 135, 13 pp. |
[4] |
P. Howard and K. Zumbrun, Pointwise estimates and stability for dispersive-diffusive shock waves, Arch. Ration. Mech. Anal., 155 (2000), 85-169.doi: 10.1007/s002050000110. |
[5] |
P. Howard and K. Zumbrun, The Evans function and stability criteria for degenerate viscous shock waves, Discrete Contin. Dyn. Syst., 10 (2004), 837-855.doi: 10.3934/dcds.2004.10.837. |
[6] |
D. Jacobs, B. McKinney and M. Shearer, Travelling wave solutions of the modified Korteweg-de Vries-Burgers equation, J. Differential Equations, 116 (1995), 448-467.doi: 10.1006/jdeq.1995.1043. |
[7] |
T. J. Kaper and C. K. R. T. Jones, A primer on the exchange lemma for fast-slow systems. Multiple-time-scale dynamical systems (Minneapolis, MN, 1997), 65-87, IMA Vol. Math. Appl., 122, Springer, New York, 2001. |
[8] |
C. K. R. T. Jones, Geometric singular perturbation theory, Dynamical systems (Montecatini Terme, 1994), 44-118, Lecture Notes in Math. 1609, Springer, Berlin, 1995. |
[9] |
C. K. R. T. Jones and N. Kopell, Tracking invariant manifolds withdifferential forms in singularly perturbed systems, J. Differential Equations, 108 (1994), 64-89.doi: 10.1006/jdeq.1994.1025. |
[10] |
C. K. R. T. Jones and S.-K. Tin, Generalized exchange lemmas and orbits heteroclinic to invariant manifolds, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 967-1023.doi: 10.3934/dcdss.2009.2.967. |
[11] |
K. T. Joseph and P. G. LeFloch, Singular limits for the Riemann problem: general diffusion, relaxation, and boundary conditions, Analytical Approaches to Multidimensional Balance Laws, 143-172, Nova Sci. Publ., New York, 2006. |
[12] |
K. T. Joseph and P. G. LeFloch, Singular limits in phase dynamics with physical viscosity and capillarity, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 1287-1312.doi: 10.1017/S030821050600093X. |
[13] |
P. G. LeFloch, "Hyperbolic Systems of Conservation Laws. The Theory of Classical and Nonclassical Shock Waves," Lectures in Mathematics ETH Zuich, Birkhauser, Basel, 2002. |
[14] |
P. G. LeFloch and C. Rohde, Zero diffusion-dispersion limits for self-similar Riemann solutions to hyperbolic systems of conservation laws, Indiana Univ. Math. J., 50 (2001), 1707-743.doi: 10.1512/iumj.2001.50.2057. |
[15] |
X.-B. Lin, Analytic semigroup generated by the linearization of a Riemann-Dafermos solution, Dyn. Partial Differ. Equ., 1 (2004), 193-207. |
[16] |
X.-B. Lin, Slow eigenvalues of self-similar solutions of the Dafermos regularization of a system of conservation laws: an analytic approach, J. Dynam. Differential Equations, 18 (2006), 1-52.doi: 10.1007/s10884-005-9001-2. |
[17] |
X.-B. Lin and S. Schecter, Stability of self-similar solutions of the Dafermos regularization of a system of conservation laws, SIAM J. Math. Anal., 35 (2003), 884-921.doi: 10.1137/S0036141002405029. |
[18] |
T.-P. Liu, Nonlinear stability of shock waves for viscous conservation laws, Mem. Amer. Math. Soc., 56 (1985), 1-108. |
[19] |
W. Liu, Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws, Discrete Contin. Dyn. Syst., 10 (2004), 871-884.doi: 10.3934/dcds.2004.10.871. |
[20] |
B. Sandstede, Stability of traveling waves, in "Handbook of Dynamical Systems," Vol. 2, 983-1055, North-Holland, Amsterdam, 2002.doi: 10.1016/S1874-575X(02)80039-X. |
[21] |
S. Schecter, Undercompressive shock waves and the Dafermos regularization, Nonlinearity, 15 (2002), 1361-1377.doi: 10.1088/0951-7715/15/4/318. |
[22] |
S. Schecter, Eigenvalues of self-similar solutions of the Dafermos regularization of a system of conservation laws via geometric singular perturbation theory, J. Dynam. Differential Equations, 18 (2006), 53-101.doi: 10.1007/s10884-005-9000-3. |
[23] |
S. Schecter and P. Szmolyan, Composite waves in the Dafermos regularization, J. Dynam. Differential Equations, 16 (2004), 847-867.doi: 10.1007/s10884-004-6698-2. |
[24] |
S. Schecter and P. Szmolyan, Persistence of rarefactions under Dafermos regularization: blow-up and an exchange lemma for gain-of-stability turning points, SIAM J. Appl. Dyn. Syst., 8 (2009), 822-853.doi: 10.1137/080715305. |
[25] |
A. Szepessy and K. Zumbrun, Stability of rarefaction waves in viscous media, Arch. Ration. Mech. Anal., 133 (1996), 249-298.doi: 10.1007/BF00380894. |
[26] |
V. A. Tupčiev, On the splitting of an arbitrary discontinuity for a system of two first-order quasi-linear equations, Ž. Vyčisl. Mat. i Mat. Fiz., 4, 817-825. English translation: USSR Comput. Math. Math. Phys. 4 (1964), 36-48. |
[27] |
V. A. Tupčiev, The method of introducing a viscosity in the study of a problem of decay of a discontinuity, Dokl. Akad. Nauk SSSR, 211, 55-58. English translation: Soviet Math. Dokl. 14 (1973), 978-982. |
[28] |
A. E. Tzavaras, Wave interactions and variation estimates for self-similar zero-viscosity limits in systems of conservation laws, Arch. Ration. Mech. Anal., 135 (1996), 1-60.doi: 10.1007/BF02198434. |
[29] |
K. Zumbrun and P. Howard, Pointwise semigroup methods and stability of viscous shock waves, Indiana Univ. Math. J., 47 (1998), 741-871.doi: 10.1512/iumj.1998.47.1604. |