December  2012, 32(12): 4069-4110. doi: 10.3934/dcds.2012.32.4069

Dafermos regularization of a diffusive-dispersive equation with cubic flux

1. 

Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205

2. 

Department of Mathematics, Shepherd University, Shepherdstown, WV 25443-5000, United States

Received  June 2011 Revised  June 2012 Published  August 2012

We study existence and spectral stability of stationary solutions of the Dafermos regularization of a much-studied diffusive-dispersive equation with cubic flux. Our study includes stationary solutions that corresponds to Riemann solutions consisting of an undercompressive shock wave followed by a compressive shock wave. We use geometric singular perturbation theory (1) to construct the solutions, and (2) to show that asmptotically, there are no large eigenvalues, and any order-one eigenvalues must be near $-1$ or a certain number $\lambda^*$. We give numerical evidence that $\lambda^*$ is also $-1$. Finally, we use pseudoexponential dichotomies to show that in a space of exponentially decreasing functions, the essential spectrum is contained in Re$ \lambda \le -\delta <0 $.
Citation: Stephen Schecter, Monique Richardson Taylor. Dafermos regularization of a diffusive-dispersive equation with cubic flux. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4069-4110. doi: 10.3934/dcds.2012.32.4069
References:
[1]

A. Azevedo, D. Marchesin, B. J. Plohr and K. Zumbrun, Nonuniqueness of solutions of Riemann problems,, Zeit. angew. Math. Phys., 47 (1996), 977.  doi: 10.1007/BF00920046.  Google Scholar

[2]

C. M. Dafermos, Solution of the Riemann problem for a class of hyperbolic systems of conservation lawsby the viscosity method,, Arch. Ration. Mech. Anal., 52 (1973), 1.  doi: 10.1007/BF00249087.  Google Scholar

[3]

J. Dodd, Spectral stability of undercompressive shock profile solutions of a modified KdV-Burgers equation,, Electron. J. Differential Equations, 2007 ().   Google Scholar

[4]

P. Howard and K. Zumbrun, Pointwise estimates and stability for dispersive-diffusive shock waves,, Arch. Ration. Mech. Anal., 155 (2000), 85.  doi: 10.1007/s002050000110.  Google Scholar

[5]

P. Howard and K. Zumbrun, The Evans function and stability criteria for degenerate viscous shock waves,, Discrete Contin. Dyn. Syst., 10 (2004), 837.  doi: 10.3934/dcds.2004.10.837.  Google Scholar

[6]

D. Jacobs, B. McKinney and M. Shearer, Travelling wave solutions of the modified Korteweg-de Vries-Burgers equation,, J. Differential Equations, 116 (1995), 448.  doi: 10.1006/jdeq.1995.1043.  Google Scholar

[7]

T. J. Kaper and C. K. R. T. Jones, A primer on the exchange lemma for fast-slow systems., Multiple-time-scale dynamical systems (Minneapolis, 122 (1997), 65.   Google Scholar

[8]

C. K. R. T. Jones, Geometric singular perturbation theory,, Dynamical systems (Montecatini Terme, 1609 (1994), 44.   Google Scholar

[9]

C. K. R. T. Jones and N. Kopell, Tracking invariant manifolds withdifferential forms in singularly perturbed systems,, J. Differential Equations, 108 (1994), 64.  doi: 10.1006/jdeq.1994.1025.  Google Scholar

[10]

C. K. R. T. Jones and S.-K. Tin, Generalized exchange lemmas and orbits heteroclinic to invariant manifolds,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 967.  doi: 10.3934/dcdss.2009.2.967.  Google Scholar

[11]

K. T. Joseph and P. G. LeFloch, Singular limits for the Riemann problem: general diffusion, relaxation, and boundary conditions,, Analytical Approaches to Multidimensional Balance Laws, (2006), 143.   Google Scholar

[12]

K. T. Joseph and P. G. LeFloch, Singular limits in phase dynamics with physical viscosity and capillarity,, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 1287.  doi: 10.1017/S030821050600093X.  Google Scholar

[13]

P. G. LeFloch, "Hyperbolic Systems of Conservation Laws. The Theory of Classical and Nonclassical Shock Waves,", Lectures in Mathematics ETH Zuich, (2002).   Google Scholar

[14]

P. G. LeFloch and C. Rohde, Zero diffusion-dispersion limits for self-similar Riemann solutions to hyperbolic systems of conservation laws,, Indiana Univ. Math. J., 50 (2001), 1707.  doi: 10.1512/iumj.2001.50.2057.  Google Scholar

[15]

X.-B. Lin, Analytic semigroup generated by the linearization of a Riemann-Dafermos solution,, Dyn. Partial Differ. Equ., 1 (2004), 193.   Google Scholar

[16]

X.-B. Lin, Slow eigenvalues of self-similar solutions of the Dafermos regularization of a system of conservation laws: an analytic approach,, J. Dynam. Differential Equations, 18 (2006), 1.  doi: 10.1007/s10884-005-9001-2.  Google Scholar

[17]

X.-B. Lin and S. Schecter, Stability of self-similar solutions of the Dafermos regularization of a system of conservation laws,, SIAM J. Math. Anal., 35 (2003), 884.  doi: 10.1137/S0036141002405029.  Google Scholar

[18]

T.-P. Liu, Nonlinear stability of shock waves for viscous conservation laws,, Mem. Amer. Math. Soc., 56 (1985), 1.   Google Scholar

[19]

W. Liu, Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws,, Discrete Contin. Dyn. Syst., 10 (2004), 871.  doi: 10.3934/dcds.2004.10.871.  Google Scholar

[20]

B. Sandstede, Stability of traveling waves,, in, (2002), 983.  doi: 10.1016/S1874-575X(02)80039-X.  Google Scholar

[21]

S. Schecter, Undercompressive shock waves and the Dafermos regularization,, Nonlinearity, 15 (2002), 1361.  doi: 10.1088/0951-7715/15/4/318.  Google Scholar

[22]

S. Schecter, Eigenvalues of self-similar solutions of the Dafermos regularization of a system of conservation laws via geometric singular perturbation theory,, J. Dynam. Differential Equations, 18 (2006), 53.  doi: 10.1007/s10884-005-9000-3.  Google Scholar

[23]

S. Schecter and P. Szmolyan, Composite waves in the Dafermos regularization,, J. Dynam. Differential Equations, 16 (2004), 847.  doi: 10.1007/s10884-004-6698-2.  Google Scholar

[24]

S. Schecter and P. Szmolyan, Persistence of rarefactions under Dafermos regularization: blow-up and an exchange lemma for gain-of-stability turning points,, SIAM J. Appl. Dyn. Syst., 8 (2009), 822.  doi: 10.1137/080715305.  Google Scholar

[25]

A. Szepessy and K. Zumbrun, Stability of rarefaction waves in viscous media,, Arch. Ration. Mech. Anal., 133 (1996), 249.  doi: 10.1007/BF00380894.  Google Scholar

[26]

V. A. Tupčiev, On the splitting of an arbitrary discontinuity for a system of two first-order quasi-linear equations,, Ž. Vyčisl. Mat. i Mat. Fiz., 4 (1964), 817.   Google Scholar

[27]

V. A. Tupčiev, The method of introducing a viscosity in the study of a problem of decay of a discontinuity,, Dokl. Akad. Nauk SSSR, 211 (1973), 55.   Google Scholar

[28]

A. E. Tzavaras, Wave interactions and variation estimates for self-similar zero-viscosity limits in systems of conservation laws,, Arch. Ration. Mech. Anal., 135 (1996), 1.  doi: 10.1007/BF02198434.  Google Scholar

[29]

K. Zumbrun and P. Howard, Pointwise semigroup methods and stability of viscous shock waves,, Indiana Univ. Math. J., 47 (1998), 741.  doi: 10.1512/iumj.1998.47.1604.  Google Scholar

show all references

References:
[1]

A. Azevedo, D. Marchesin, B. J. Plohr and K. Zumbrun, Nonuniqueness of solutions of Riemann problems,, Zeit. angew. Math. Phys., 47 (1996), 977.  doi: 10.1007/BF00920046.  Google Scholar

[2]

C. M. Dafermos, Solution of the Riemann problem for a class of hyperbolic systems of conservation lawsby the viscosity method,, Arch. Ration. Mech. Anal., 52 (1973), 1.  doi: 10.1007/BF00249087.  Google Scholar

[3]

J. Dodd, Spectral stability of undercompressive shock profile solutions of a modified KdV-Burgers equation,, Electron. J. Differential Equations, 2007 ().   Google Scholar

[4]

P. Howard and K. Zumbrun, Pointwise estimates and stability for dispersive-diffusive shock waves,, Arch. Ration. Mech. Anal., 155 (2000), 85.  doi: 10.1007/s002050000110.  Google Scholar

[5]

P. Howard and K. Zumbrun, The Evans function and stability criteria for degenerate viscous shock waves,, Discrete Contin. Dyn. Syst., 10 (2004), 837.  doi: 10.3934/dcds.2004.10.837.  Google Scholar

[6]

D. Jacobs, B. McKinney and M. Shearer, Travelling wave solutions of the modified Korteweg-de Vries-Burgers equation,, J. Differential Equations, 116 (1995), 448.  doi: 10.1006/jdeq.1995.1043.  Google Scholar

[7]

T. J. Kaper and C. K. R. T. Jones, A primer on the exchange lemma for fast-slow systems., Multiple-time-scale dynamical systems (Minneapolis, 122 (1997), 65.   Google Scholar

[8]

C. K. R. T. Jones, Geometric singular perturbation theory,, Dynamical systems (Montecatini Terme, 1609 (1994), 44.   Google Scholar

[9]

C. K. R. T. Jones and N. Kopell, Tracking invariant manifolds withdifferential forms in singularly perturbed systems,, J. Differential Equations, 108 (1994), 64.  doi: 10.1006/jdeq.1994.1025.  Google Scholar

[10]

C. K. R. T. Jones and S.-K. Tin, Generalized exchange lemmas and orbits heteroclinic to invariant manifolds,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 967.  doi: 10.3934/dcdss.2009.2.967.  Google Scholar

[11]

K. T. Joseph and P. G. LeFloch, Singular limits for the Riemann problem: general diffusion, relaxation, and boundary conditions,, Analytical Approaches to Multidimensional Balance Laws, (2006), 143.   Google Scholar

[12]

K. T. Joseph and P. G. LeFloch, Singular limits in phase dynamics with physical viscosity and capillarity,, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 1287.  doi: 10.1017/S030821050600093X.  Google Scholar

[13]

P. G. LeFloch, "Hyperbolic Systems of Conservation Laws. The Theory of Classical and Nonclassical Shock Waves,", Lectures in Mathematics ETH Zuich, (2002).   Google Scholar

[14]

P. G. LeFloch and C. Rohde, Zero diffusion-dispersion limits for self-similar Riemann solutions to hyperbolic systems of conservation laws,, Indiana Univ. Math. J., 50 (2001), 1707.  doi: 10.1512/iumj.2001.50.2057.  Google Scholar

[15]

X.-B. Lin, Analytic semigroup generated by the linearization of a Riemann-Dafermos solution,, Dyn. Partial Differ. Equ., 1 (2004), 193.   Google Scholar

[16]

X.-B. Lin, Slow eigenvalues of self-similar solutions of the Dafermos regularization of a system of conservation laws: an analytic approach,, J. Dynam. Differential Equations, 18 (2006), 1.  doi: 10.1007/s10884-005-9001-2.  Google Scholar

[17]

X.-B. Lin and S. Schecter, Stability of self-similar solutions of the Dafermos regularization of a system of conservation laws,, SIAM J. Math. Anal., 35 (2003), 884.  doi: 10.1137/S0036141002405029.  Google Scholar

[18]

T.-P. Liu, Nonlinear stability of shock waves for viscous conservation laws,, Mem. Amer. Math. Soc., 56 (1985), 1.   Google Scholar

[19]

W. Liu, Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws,, Discrete Contin. Dyn. Syst., 10 (2004), 871.  doi: 10.3934/dcds.2004.10.871.  Google Scholar

[20]

B. Sandstede, Stability of traveling waves,, in, (2002), 983.  doi: 10.1016/S1874-575X(02)80039-X.  Google Scholar

[21]

S. Schecter, Undercompressive shock waves and the Dafermos regularization,, Nonlinearity, 15 (2002), 1361.  doi: 10.1088/0951-7715/15/4/318.  Google Scholar

[22]

S. Schecter, Eigenvalues of self-similar solutions of the Dafermos regularization of a system of conservation laws via geometric singular perturbation theory,, J. Dynam. Differential Equations, 18 (2006), 53.  doi: 10.1007/s10884-005-9000-3.  Google Scholar

[23]

S. Schecter and P. Szmolyan, Composite waves in the Dafermos regularization,, J. Dynam. Differential Equations, 16 (2004), 847.  doi: 10.1007/s10884-004-6698-2.  Google Scholar

[24]

S. Schecter and P. Szmolyan, Persistence of rarefactions under Dafermos regularization: blow-up and an exchange lemma for gain-of-stability turning points,, SIAM J. Appl. Dyn. Syst., 8 (2009), 822.  doi: 10.1137/080715305.  Google Scholar

[25]

A. Szepessy and K. Zumbrun, Stability of rarefaction waves in viscous media,, Arch. Ration. Mech. Anal., 133 (1996), 249.  doi: 10.1007/BF00380894.  Google Scholar

[26]

V. A. Tupčiev, On the splitting of an arbitrary discontinuity for a system of two first-order quasi-linear equations,, Ž. Vyčisl. Mat. i Mat. Fiz., 4 (1964), 817.   Google Scholar

[27]

V. A. Tupčiev, The method of introducing a viscosity in the study of a problem of decay of a discontinuity,, Dokl. Akad. Nauk SSSR, 211 (1973), 55.   Google Scholar

[28]

A. E. Tzavaras, Wave interactions and variation estimates for self-similar zero-viscosity limits in systems of conservation laws,, Arch. Ration. Mech. Anal., 135 (1996), 1.  doi: 10.1007/BF02198434.  Google Scholar

[29]

K. Zumbrun and P. Howard, Pointwise semigroup methods and stability of viscous shock waves,, Indiana Univ. Math. J., 47 (1998), 741.  doi: 10.1512/iumj.1998.47.1604.  Google Scholar

[1]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[2]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[3]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[4]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[5]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[6]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[7]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[8]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[9]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[10]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[11]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[12]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[13]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[14]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[15]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[16]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[17]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[18]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[19]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[20]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]