February  2012, 32(2): 411-432. doi: 10.3934/dcds.2012.32.411

Large solutions of elliptic systems of second order and applications to the biharmonic equation

1. 

Laboratoire de Mathématiques et Physique Théorique, CNRS UMR 6083, Faculté des Sciences, 37200 Tours, France

2. 

Departamento de Matemáticas, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile

3. 

Departamento de Matemática y C.C., Universidad de Santiago de Chile, Casilla 307, Correo 2, Santiago, Chile

Received  December 2010 Revised  May 2011 Published  September 2011

In this work we study the nonnegative solutions of the elliptic system \[ \Delta u=|x|^{a}v^{\delta},\qquad\Delta v=|x|^{b}u^{\mu}% \] in the superlinear case $\mu\delta>1,$ which blow up near the boundary of a domain of $\mathbb{R}^{N},$ or at one isolated point. In the radial case we give the precise behavior of the large solutions near the boundary in any dimension $N$. We also show the existence of infinitely many solutions blowing up at $0.$ Furthermore, we show that there exists a global positive solution in $\mathbb{R}^{N}\backslash\left\{ 0\right\} ,$ large at $0,$ and we describe its behavior. We apply the results to the sign changing solutions of the biharmonic equation \[ \Delta^{2}u=\left\vert x\right\vert ^{b}\left\vert u\right\vert ^{\mu}. \] Our results are based on a new dynamical approach of the radial system by means of a quadratic system of order 4, introduced in [4], combined with the nonradial upper estimates of [5].
Citation: Marie-Françoise Bidaut-Véron, Marta García-Huidobro, Cecilia Yarur. Large solutions of elliptic systems of second order and applications to the biharmonic equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 411-432. doi: 10.3934/dcds.2012.32.411
References:
[1]

C. Bandle and M. Essén, On the solutions of quasilinear elliptic problems with boundary blow-up,, in, (1994), 93.   Google Scholar

[2]

C. Bandle and M. Marcus, "Large" solutions of semilinear elliptic equations: Existence, uniqueness and asymptotic behavior,, J. Anal. Math., 58 (1992), 9.  doi: 10.1007/BF02790355.  Google Scholar

[3]

C. Bandle and M. Marcus, On second-order effects in the boundary behavior of large solutions of semilinear elliptic problems,, Differential and Integral Equations, 11 (1998), 23.   Google Scholar

[4]

M. Bidaut-Veron and H. Giacomini, A new dynamical approach of Emden-Fowler equations and systems,, Adv. Diff. Eq., 15 (2010), 1033.   Google Scholar

[5]

M.-F. Bidaut-Veron and P. Grillot, Singularities in elliptic systems with absorption terms,, Ann. Scuola Norm. Sup. Pisa CL. Sci., 28 (1999), 229.   Google Scholar

[6]

W. A. Coppel, "Stability and Asymptotic Behavior of Differential Equations,'', D. C. Heath and Co., (1965).   Google Scholar

[7]

O. Costin and L. Dupaigne, Boundary blow-up solutions in the unit ball: Asymptotics, uniqueness and symmetry,, J. Diff. Equat., 249 (2010), 931.   Google Scholar

[8]

J. Dávila, L. Dupaigne, O. Goubet and S. Martinez, Boundary blow-up solutions of cooperative systems,, Ann. I. H. Poincaré Anal. Non Linéaire, 26 (2009), 1767.   Google Scholar

[9]

M. Del Pino and R. Letelier, The infuence of domain geometry in boundary blow-up elliptic problems,, Nonlinear Anal., 48 (2002), 897.  doi: 10.1016/S0362-546X(00)00222-4.  Google Scholar

[10]

G. Díaz and R. Letelier, Explosive solutions of quasilinear elliptic equations: Existence and uniqueness,, Nonlinear Anal., 20 (1993), 97.  doi: 10.1016/0362-546X(93)90012-H.  Google Scholar

[11]

J. I. Díaz, M. Lazzo and P. G. Schmidt, "Large Radial Solutions of a Plolyharmonic Equation with Superlinear Growth,", Proceedings of the 2006 International Conference in honor of Jacqueline Feckinger, 16 (2007), 103.   Google Scholar

[12]

J. García-Melián and A. Suárez, Existence and uniqueness of positive large solutions to some cooperative elliptic systems,, Advanced Nonlinear Studies, 3 (2003), 193.   Google Scholar

[13]

J. García-Melián and J. D. Rossi, Boundary blow-up solutions to elliptic systems of competitive type,, J. Diff. Equat., 206 (2004), 156.   Google Scholar

[14]

J. García-Melián, Large solutions for an elliptic system of quasilinear equations,, J. Differential Equat., 245 (2008), 3735.  doi: 10.1016/j.jde.2008.04.004.  Google Scholar

[15]

J. García-Melián, R. Letelier-Albornoz and J. Sabina de Lis, The solvability of an elliptic system under a singular boundary condition,, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 509.  doi: 10.1017/S0308210500005047.  Google Scholar

[16]

A. C. Lazer and P. J. Mckenna, Asymptotic behavior of solutions of boundary blowup problems,, Differential and Integral Equations, 7 (1994), 1001.   Google Scholar

[17]

C. Loewner and L. Nirenberg, Partial differential equations invariant under conformal or projective transformations,, in, (1974), 245.   Google Scholar

[18]

H. Logemann and E. P. Ryan, Non-autonomous systems: Asymptotic behavior and weak invariance principles,, Journal of Diff. Equat., 189 (2003), 440.  doi: 10.1016/S0022-0396(02)00144-4.  Google Scholar

[19]

M. Marcus and L. Véron, Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 237.   Google Scholar

[20]

M. Marcus and L. Véron, Existence and uniqueness results for large solutions of general nonlinear elliptic equations,, J. Evol. Equ., 3 (2003), 637.  doi: 10.1007/s00028-003-0122-y.  Google Scholar

[21]

C. Mu, S. Huang, Q. Tian and L. Liu, Large solutions for an elliptic system of competitive type: Existence, uniqueness and asymptotic behavior,, Nonlinear Anal., 71 (2009), 4544.  doi: 10.1016/j.na.2009.03.012.  Google Scholar

[22]

L. Véron, Semilinear elliptic equations with uniform blow-up on the boundary,, J. Anal. Math., 59 (1992), 231.   Google Scholar

[23]

L. Véron, "Singularities of Solutions of Second Order Quasilinear Equations,", Pitman Research Notes in Math. Series, 353 (1996).   Google Scholar

[24]

Y. Wang, Boundary blow-up solutions for a cooperative system of quasinear equation,, preprint., ().   Google Scholar

[25]

M. Wu and Z. Yang, Existence of boundary blow-up solutions for a class of quasilinear elliptic systems with critical case,, Applied Math. Comput., 198 (2008), 574.  doi: 10.1016/j.amc.2007.08.074.  Google Scholar

[26]

C. Yarur, Nonexistence of positive singular solutions for a class of semilinear elliptic systems,, Electronic J. Differential Equat., 1996 ().   Google Scholar

[27]

C. Yarur, A priori estimates for positive solutions for a class of semilinear elliptic systems,, Nonlinear Anal., 36 (1999), 71.  doi: 10.1016/S0362-546X(97)00726-8.  Google Scholar

show all references

References:
[1]

C. Bandle and M. Essén, On the solutions of quasilinear elliptic problems with boundary blow-up,, in, (1994), 93.   Google Scholar

[2]

C. Bandle and M. Marcus, "Large" solutions of semilinear elliptic equations: Existence, uniqueness and asymptotic behavior,, J. Anal. Math., 58 (1992), 9.  doi: 10.1007/BF02790355.  Google Scholar

[3]

C. Bandle and M. Marcus, On second-order effects in the boundary behavior of large solutions of semilinear elliptic problems,, Differential and Integral Equations, 11 (1998), 23.   Google Scholar

[4]

M. Bidaut-Veron and H. Giacomini, A new dynamical approach of Emden-Fowler equations and systems,, Adv. Diff. Eq., 15 (2010), 1033.   Google Scholar

[5]

M.-F. Bidaut-Veron and P. Grillot, Singularities in elliptic systems with absorption terms,, Ann. Scuola Norm. Sup. Pisa CL. Sci., 28 (1999), 229.   Google Scholar

[6]

W. A. Coppel, "Stability and Asymptotic Behavior of Differential Equations,'', D. C. Heath and Co., (1965).   Google Scholar

[7]

O. Costin and L. Dupaigne, Boundary blow-up solutions in the unit ball: Asymptotics, uniqueness and symmetry,, J. Diff. Equat., 249 (2010), 931.   Google Scholar

[8]

J. Dávila, L. Dupaigne, O. Goubet and S. Martinez, Boundary blow-up solutions of cooperative systems,, Ann. I. H. Poincaré Anal. Non Linéaire, 26 (2009), 1767.   Google Scholar

[9]

M. Del Pino and R. Letelier, The infuence of domain geometry in boundary blow-up elliptic problems,, Nonlinear Anal., 48 (2002), 897.  doi: 10.1016/S0362-546X(00)00222-4.  Google Scholar

[10]

G. Díaz and R. Letelier, Explosive solutions of quasilinear elliptic equations: Existence and uniqueness,, Nonlinear Anal., 20 (1993), 97.  doi: 10.1016/0362-546X(93)90012-H.  Google Scholar

[11]

J. I. Díaz, M. Lazzo and P. G. Schmidt, "Large Radial Solutions of a Plolyharmonic Equation with Superlinear Growth,", Proceedings of the 2006 International Conference in honor of Jacqueline Feckinger, 16 (2007), 103.   Google Scholar

[12]

J. García-Melián and A. Suárez, Existence and uniqueness of positive large solutions to some cooperative elliptic systems,, Advanced Nonlinear Studies, 3 (2003), 193.   Google Scholar

[13]

J. García-Melián and J. D. Rossi, Boundary blow-up solutions to elliptic systems of competitive type,, J. Diff. Equat., 206 (2004), 156.   Google Scholar

[14]

J. García-Melián, Large solutions for an elliptic system of quasilinear equations,, J. Differential Equat., 245 (2008), 3735.  doi: 10.1016/j.jde.2008.04.004.  Google Scholar

[15]

J. García-Melián, R. Letelier-Albornoz and J. Sabina de Lis, The solvability of an elliptic system under a singular boundary condition,, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 509.  doi: 10.1017/S0308210500005047.  Google Scholar

[16]

A. C. Lazer and P. J. Mckenna, Asymptotic behavior of solutions of boundary blowup problems,, Differential and Integral Equations, 7 (1994), 1001.   Google Scholar

[17]

C. Loewner and L. Nirenberg, Partial differential equations invariant under conformal or projective transformations,, in, (1974), 245.   Google Scholar

[18]

H. Logemann and E. P. Ryan, Non-autonomous systems: Asymptotic behavior and weak invariance principles,, Journal of Diff. Equat., 189 (2003), 440.  doi: 10.1016/S0022-0396(02)00144-4.  Google Scholar

[19]

M. Marcus and L. Véron, Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 237.   Google Scholar

[20]

M. Marcus and L. Véron, Existence and uniqueness results for large solutions of general nonlinear elliptic equations,, J. Evol. Equ., 3 (2003), 637.  doi: 10.1007/s00028-003-0122-y.  Google Scholar

[21]

C. Mu, S. Huang, Q. Tian and L. Liu, Large solutions for an elliptic system of competitive type: Existence, uniqueness and asymptotic behavior,, Nonlinear Anal., 71 (2009), 4544.  doi: 10.1016/j.na.2009.03.012.  Google Scholar

[22]

L. Véron, Semilinear elliptic equations with uniform blow-up on the boundary,, J. Anal. Math., 59 (1992), 231.   Google Scholar

[23]

L. Véron, "Singularities of Solutions of Second Order Quasilinear Equations,", Pitman Research Notes in Math. Series, 353 (1996).   Google Scholar

[24]

Y. Wang, Boundary blow-up solutions for a cooperative system of quasinear equation,, preprint., ().   Google Scholar

[25]

M. Wu and Z. Yang, Existence of boundary blow-up solutions for a class of quasilinear elliptic systems with critical case,, Applied Math. Comput., 198 (2008), 574.  doi: 10.1016/j.amc.2007.08.074.  Google Scholar

[26]

C. Yarur, Nonexistence of positive singular solutions for a class of semilinear elliptic systems,, Electronic J. Differential Equat., 1996 ().   Google Scholar

[27]

C. Yarur, A priori estimates for positive solutions for a class of semilinear elliptic systems,, Nonlinear Anal., 36 (1999), 71.  doi: 10.1016/S0362-546X(97)00726-8.  Google Scholar

[1]

Marie-Françoise Bidaut-Véron, Marta García-Huidobro, Cecilia Yarur. Keller-Osserman estimates for some quasilinear elliptic systems. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1547-1568. doi: 10.3934/cpaa.2013.12.1547

[2]

Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure & Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435

[3]

Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54

[4]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[5]

Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101

[6]

Zhijun Zhang, Ling Mi. Blow-up rates of large solutions for semilinear elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1733-1745. doi: 10.3934/cpaa.2011.10.1733

[7]

Mingzhu Wu, Zuodong Yang. Existence of boundary blow-up solutions for a class of quasiliner elliptic systems for the subcritical case. Communications on Pure & Applied Analysis, 2007, 6 (2) : 531-540. doi: 10.3934/cpaa.2007.6.531

[8]

Jorge García-Melián, Julio D. Rossi, José C. Sabina de Lis. Elliptic systems with boundary blow-up: existence, uniqueness and applications to removability of singularities. Communications on Pure & Applied Analysis, 2016, 15 (2) : 549-562. doi: 10.3934/cpaa.2016.15.549

[9]

Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881

[10]

Ansgar Jüngel, Oliver Leingang. Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel models. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4755-4782. doi: 10.3934/dcdsb.2019029

[11]

Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 233-255. doi: 10.3934/dcdss.2020013

[12]

Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089

[13]

Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147

[14]

Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569

[15]

Vincent Calvez, Thomas O. Gallouët. Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1175-1208. doi: 10.3934/dcds.2016.36.1175

[16]

Yūki Naito, Takasi Senba. Blow-up behavior of solutions to a parabolic-elliptic system on higher dimensional domains. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3691-3713. doi: 10.3934/dcds.2012.32.3691

[17]

Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023

[18]

Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225

[19]

Yuta Wakasugi. Blow-up of solutions to the one-dimensional semilinear wave equation with damping depending on time and space variables. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3831-3846. doi: 10.3934/dcds.2014.34.3831

[20]

Yohei Fujishima. On the effect of higher order derivatives of initial data on the blow-up set for a semilinear heat equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 449-475. doi: 10.3934/cpaa.2018025

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

[Back to Top]