\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Noninvertible cocycles: Robustness of exponential dichotomies

Abstract / Introduction Related Papers Cited by
  • For the dynamics defined by a sequence of bounded linear operators in a Banach space, we establish the robustness of the notion of exponential dichotomy. This means that an exponential dichotomy persists under sufficiently small linear perturbations. We consider the general cases of a nonuniform exponential dichotomy, which requires much less than a uniform exponential dichotomy, and of a noninvertible dynamics or, more precisely, of a dynamics that may not be invertible in the stable direction.
    Mathematics Subject Classification: Primary: 34D99, 37C75.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Barreira and Ya. Pesin, "Nonuniform Hyperbolicity," Encyclopedia of Math. and Its Appl. 115, Cambridge Univ. Press, 2007.

    [2]

    L. Barreira and C. Valls, Stability theory and Lyapunov regularity, J. Differential Equations, 232 (2007), 675-701.doi: 10.1016/j.jde.2006.09.021.

    [3]

    L. Barreira and C. Valls, Robustness of nonuniform exponential dichotomies in Banach spaces, J. Differential Equations, 244 (2008), 2407-2447.doi: 10.1016/j.jde.2008.02.028.

    [4]

    L. Barreira and C. Valls, "Stability of Nonautonomous Differential Equations," Lect. Notes in Math. 1926, Springer, 2008.

    [5]

    L. Barreira and C. Valls, Robustness of discrete dynamics via Lyapunov sequences, Comm. Math. Phys., 290 (2009), 219-238.doi: 10.1007/s00220-009-0762-z.

    [6]

    L. Barreira and C. Valls, Robust nonuniform dichotomies and parameter dependence, J. Math. Anal. Appl., 373 (2011), 690-708.doi: 10.1016/j.jmaa.2010.08.026.

    [7]

    C. Chicone and Yu. Latushkin, "Evolution Semigroups in Dynamical Systems and Differential Equations," Mathematical Surveys and Monographs 70, Amer. Math. Soc., 1999.

    [8]

    S.-N. Chow and H. Leiva, Existence and roughness of the exponential dichotomy for skew-product semiflow in Banach spaces, J. Differential Equations, 120 (1995), 429-477.doi: 10.1006/jdeq.1995.1117.

    [9]

    W. Coppel, Dichotomies and reducibility, J. Differential Equations, 3 (1967), 500-521.

    [10]

    W. Coppel, "Dichotomies in Stability Theory," Lect. Notes in Math. 629, Springer, 1978.

    [11]

    Ju. Dalec$'$kiĭ and M. Kreĭn, "Stability of Solutions of Differential Equations in Banach Space," Translations of Mathematical Monographs 43, Amer. Math. Soc., 1974.

    [12]

    J. Hale, "Asymptotic Behavior of Dissipative Systems," Mathematical Surveys and Monographs 25, Amer. Math. Soc., 1988.

    [13]

    D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lect. Notes in Math. 840, Springer, 1981.

    [14]

    N. Huy, Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line, J. Funct. Anal., 235 (2006), 330-354.doi: 10.1016/j.jfa.2005.11.002.

    [15]

    J. Massera and J. Schäffer, Linear differential equations and functional analysis. I, Ann. of Math., 67 (1958), 517-573.doi: 10.2307/1969871.

    [16]

    J. Massera and J. Schäffer, "Linear Differential Equations and Function Spaces," Pure and Applied Mathematics, 21, Academic Press, 1966.

    [17]

    R. Naulin and M. Pinto, Stability of discrete dichotomies for linear difference systems, J. Differ. Equations Appl., 3 (1997), 101-123.

    [18]

    R. Naulin and M. Pinto, Admissible perturbations of exponential dichotomy roughness, Nonlinear Anal., 31 (1998), 559-571.doi: 10.1016/S0362-546X(97)00423-9.

    [19]

    O. Perron, Die Stabilit\"atsfrage bei Differentialgleichungen, Math. Z., 32 (1930), 703-728.doi: 10.1007/BF01194662.

    [20]

    V. Pliss and G. Sell, Robustness of exponential dichotomies ininfinite-dimensional dynamical systems, J. Dynam. Differential Equations, 11 (1999), 471-513.doi: 10.1023/A:1021913903923.

    [21]

    L. Popescu, Exponential dichotomy roughness on Banach spaces, J. Math. Anal. Appl., 314 (2006), 436-454.doi: 10.1016/j.jmaa.2005.04.011.

    [22]

    A. Sasu, Exponential dichotomy and dichotomy radius for difference equations, J. Math. Anal. Appl., 344 (2008), 906-920.doi: 10.1016/j.jmaa.2008.03.019.

    [23]

    B. Sasu and A. Sasu, Input-output conditions for the asymptotic behavior of linear skew-product flows and applications, Commun. Pure Appl. Anal., 5 (2006), 551-569.

    [24]

    G. Sell and Y. You, "Dynamics of Evolutionary Equations," Applied Mathematical Sciences 143, Springer, 2002.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(73) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return