Advanced Search
Article Contents
Article Contents

Noninvertible cocycles: Robustness of exponential dichotomies

Abstract Related Papers Cited by
  • For the dynamics defined by a sequence of bounded linear operators in a Banach space, we establish the robustness of the notion of exponential dichotomy. This means that an exponential dichotomy persists under sufficiently small linear perturbations. We consider the general cases of a nonuniform exponential dichotomy, which requires much less than a uniform exponential dichotomy, and of a noninvertible dynamics or, more precisely, of a dynamics that may not be invertible in the stable direction.
    Mathematics Subject Classification: Primary: 34D99, 37C75.


    \begin{equation} \\ \end{equation}
  • [1]

    L. Barreira and Ya. Pesin, "Nonuniform Hyperbolicity," Encyclopedia of Math. and Its Appl. 115, Cambridge Univ. Press, 2007.


    L. Barreira and C. Valls, Stability theory and Lyapunov regularity, J. Differential Equations, 232 (2007), 675-701.doi: 10.1016/j.jde.2006.09.021.


    L. Barreira and C. Valls, Robustness of nonuniform exponential dichotomies in Banach spaces, J. Differential Equations, 244 (2008), 2407-2447.doi: 10.1016/j.jde.2008.02.028.


    L. Barreira and C. Valls, "Stability of Nonautonomous Differential Equations," Lect. Notes in Math. 1926, Springer, 2008.


    L. Barreira and C. Valls, Robustness of discrete dynamics via Lyapunov sequences, Comm. Math. Phys., 290 (2009), 219-238.doi: 10.1007/s00220-009-0762-z.


    L. Barreira and C. Valls, Robust nonuniform dichotomies and parameter dependence, J. Math. Anal. Appl., 373 (2011), 690-708.doi: 10.1016/j.jmaa.2010.08.026.


    C. Chicone and Yu. Latushkin, "Evolution Semigroups in Dynamical Systems and Differential Equations," Mathematical Surveys and Monographs 70, Amer. Math. Soc., 1999.


    S.-N. Chow and H. Leiva, Existence and roughness of the exponential dichotomy for skew-product semiflow in Banach spaces, J. Differential Equations, 120 (1995), 429-477.doi: 10.1006/jdeq.1995.1117.


    W. Coppel, Dichotomies and reducibility, J. Differential Equations, 3 (1967), 500-521.


    W. Coppel, "Dichotomies in Stability Theory," Lect. Notes in Math. 629, Springer, 1978.


    Ju. Dalec$'$kiĭ and M. Kreĭn, "Stability of Solutions of Differential Equations in Banach Space," Translations of Mathematical Monographs 43, Amer. Math. Soc., 1974.


    J. Hale, "Asymptotic Behavior of Dissipative Systems," Mathematical Surveys and Monographs 25, Amer. Math. Soc., 1988.


    D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lect. Notes in Math. 840, Springer, 1981.


    N. Huy, Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line, J. Funct. Anal., 235 (2006), 330-354.doi: 10.1016/j.jfa.2005.11.002.


    J. Massera and J. Schäffer, Linear differential equations and functional analysis. I, Ann. of Math., 67 (1958), 517-573.doi: 10.2307/1969871.


    J. Massera and J. Schäffer, "Linear Differential Equations and Function Spaces," Pure and Applied Mathematics, 21, Academic Press, 1966.


    R. Naulin and M. Pinto, Stability of discrete dichotomies for linear difference systems, J. Differ. Equations Appl., 3 (1997), 101-123.


    R. Naulin and M. Pinto, Admissible perturbations of exponential dichotomy roughness, Nonlinear Anal., 31 (1998), 559-571.doi: 10.1016/S0362-546X(97)00423-9.


    O. Perron, Die Stabilit\"atsfrage bei Differentialgleichungen, Math. Z., 32 (1930), 703-728.doi: 10.1007/BF01194662.


    V. Pliss and G. Sell, Robustness of exponential dichotomies ininfinite-dimensional dynamical systems, J. Dynam. Differential Equations, 11 (1999), 471-513.doi: 10.1023/A:1021913903923.


    L. Popescu, Exponential dichotomy roughness on Banach spaces, J. Math. Anal. Appl., 314 (2006), 436-454.doi: 10.1016/j.jmaa.2005.04.011.


    A. Sasu, Exponential dichotomy and dichotomy radius for difference equations, J. Math. Anal. Appl., 344 (2008), 906-920.doi: 10.1016/j.jmaa.2008.03.019.


    B. Sasu and A. Sasu, Input-output conditions for the asymptotic behavior of linear skew-product flows and applications, Commun. Pure Appl. Anal., 5 (2006), 551-569.


    G. Sell and Y. You, "Dynamics of Evolutionary Equations," Applied Mathematical Sciences 143, Springer, 2002.

  • 加载中

Article Metrics

HTML views() PDF downloads(72) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint