December  2012, 32(12): 4133-4147. doi: 10.3934/dcds.2012.32.4133

Inducing and unique ergodicity of double rotations

1. 

Department of Mathematics, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom

Received  June 2011 Revised  October 2011 Published  August 2012

In this paper we investigate ``double rotations'', i.e., interval translation maps that when considered on the circle, have just two intervals of continuity. Using the induction procedure described by Suzuki et al., we show that Lebesgue a.e. double rotation is of finite type, i.e., it reduces to an interval exchange transformation. However, the set of infinite type double rotations is shown to have Hausdorff dimension strictly between $2$ and $3$, and carries a natural induction-invariant measure. It is also shown that non-unique ergodicity of infinite type double rotations, although occurring, is a-typical with respect to every induction-invariant probability measure in parameter space.
Citation: Henk Bruin, Gregory Clack. Inducing and unique ergodicity of double rotations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4133-4147. doi: 10.3934/dcds.2012.32.4133
References:
[1]

M. Barnsley, "Fractals Everywhere,'', Academic Press Inc., (1988).   Google Scholar

[2]

G. Birkhoff, Extensions of Jentzsch's theorem,, Trans. Amer. Math. Soc., 85 (1957), 219.  doi: 10.2307/1992971.  Google Scholar

[3]

M. Boshernitzan and I. Kornfeld, Interval translation mappings,, Ergod. Th. Dyn. Sys., 15 (1995), 821.  doi: 10.1017/S0143385700009652.  Google Scholar

[4]

H. Bruin and S. Troubetzkoy, The Gauss map on a class of interval translation mappings,, Israel J. Math., 137 (2003), 125.  doi: 10.1007/BF02785958.  Google Scholar

[5]

J. Buzzi and P. Hubert, Piecewise monotone maps without periodic points: Rigidity, measures and complexity,, Ergodic Theory Dynam. Systems, 24 (2004), 383.  doi: 10.1017/S0143385703000488.  Google Scholar

[6]

M. Keane, Non-ergodic interval exchange transformations,, Israel J. Math., 26 (1977), 188.  doi: 10.1007/BF03007668.  Google Scholar

[7]

H. B. Keynes and D. Newton, A "minimal'', non-uniquely ergodic interval exchange transformation,, Math. Z., 148 (1976), 101.  doi: 10.1007/BF01214699.  Google Scholar

[8]

R. Mañé, "Ergodic Theory and Differentiable Dynamics,'', Springer-Verlag, (1987).   Google Scholar

[9]

H. Masur, Interval exchange transformations and measured foliations,, Ann. of Math., 115 (1982), 169.  doi: 10.2307/1971341.  Google Scholar

[10]

W. de Melo and S. van Strien, "One-Dimensional Dynamics,'', Springer-Verlag, (1996).   Google Scholar

[11]

H. Suzuki, S. Ito and K. Aihara, Double rotations, , Discrete Contin. Dyn. Sys., 13 (2005), 515.  doi: 10.3934/dcds.2005.13.515.  Google Scholar

[12]

J. Schmeling and S. Troubetzkoy, Interval translation mappings,, in, (2000), 291.   Google Scholar

[13]

W. Veech, Gauss measures for transformations on the space of interval exchange maps,, Ann. of Math., 115 (1982), 201.  doi: 10.2307/1971391.  Google Scholar

show all references

References:
[1]

M. Barnsley, "Fractals Everywhere,'', Academic Press Inc., (1988).   Google Scholar

[2]

G. Birkhoff, Extensions of Jentzsch's theorem,, Trans. Amer. Math. Soc., 85 (1957), 219.  doi: 10.2307/1992971.  Google Scholar

[3]

M. Boshernitzan and I. Kornfeld, Interval translation mappings,, Ergod. Th. Dyn. Sys., 15 (1995), 821.  doi: 10.1017/S0143385700009652.  Google Scholar

[4]

H. Bruin and S. Troubetzkoy, The Gauss map on a class of interval translation mappings,, Israel J. Math., 137 (2003), 125.  doi: 10.1007/BF02785958.  Google Scholar

[5]

J. Buzzi and P. Hubert, Piecewise monotone maps without periodic points: Rigidity, measures and complexity,, Ergodic Theory Dynam. Systems, 24 (2004), 383.  doi: 10.1017/S0143385703000488.  Google Scholar

[6]

M. Keane, Non-ergodic interval exchange transformations,, Israel J. Math., 26 (1977), 188.  doi: 10.1007/BF03007668.  Google Scholar

[7]

H. B. Keynes and D. Newton, A "minimal'', non-uniquely ergodic interval exchange transformation,, Math. Z., 148 (1976), 101.  doi: 10.1007/BF01214699.  Google Scholar

[8]

R. Mañé, "Ergodic Theory and Differentiable Dynamics,'', Springer-Verlag, (1987).   Google Scholar

[9]

H. Masur, Interval exchange transformations and measured foliations,, Ann. of Math., 115 (1982), 169.  doi: 10.2307/1971341.  Google Scholar

[10]

W. de Melo and S. van Strien, "One-Dimensional Dynamics,'', Springer-Verlag, (1996).   Google Scholar

[11]

H. Suzuki, S. Ito and K. Aihara, Double rotations, , Discrete Contin. Dyn. Sys., 13 (2005), 515.  doi: 10.3934/dcds.2005.13.515.  Google Scholar

[12]

J. Schmeling and S. Troubetzkoy, Interval translation mappings,, in, (2000), 291.   Google Scholar

[13]

W. Veech, Gauss measures for transformations on the space of interval exchange maps,, Ann. of Math., 115 (1982), 201.  doi: 10.2307/1971391.  Google Scholar

[1]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[2]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[3]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[4]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[5]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[6]

Andreu Ferré Moragues. Properties of multicorrelation sequences and large returns under some ergodicity assumptions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020386

[7]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[8]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[9]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[10]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]