December  2012, 32(12): 4171-4182. doi: 10.3934/dcds.2012.32.4171

On a double penalized Smectic-A model

1. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Aptdo. 1160, 41080 Sevilla

Received  September 2011 Published  August 2012

In smectic-A liquid crystals, a unity director vector $\boldsymbol{n}$ appear modeling an average preferential direction of the molecules and also the normal vector of the layer configuration. In the E's model [5], the Ginzburg-Landau penalization related to the constraint $|\boldsymbol{n}|=1$ is considered and, assuming the constraint $\nabla\times \boldsymbol{n}=0$, $\boldsymbol{n}$ is replaced by the so-called layer variable $\varphi$ such that $\boldsymbol{n}=\nabla\varphi$.
    In this paper, a double penalized problem is introduced related to a smectic-A liquid crystal flows, considering a Cahn-Hilliard system to model the behavior of $\boldsymbol{n}$. Then, the issue of the global in time behavior of solutions is attacked, including the proof of the convergence of the whole trajectory towards a unique equilibrium state.
Citation: Blanca Climent-Ezquerra, Francisco Guillén-González. On a double penalized Smectic-A model. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4171-4182. doi: 10.3934/dcds.2012.32.4171
References:
[1]

F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional,, Calc. Var. Partial Differential Equations, 1 (1993), 123.  doi: 10.1007/BF01191614.  Google Scholar

[2]

B. Climent-Ezquerra, F. Guillén-González and M. J. Moreno-Iraberte, Regularity and time-periodicity for a nematic liquid crystal model,, Nonlinear Analysis, 71 (2009), 539.   Google Scholar

[3]

B. Climent-Ezquerra, F. Guillén-González and M. A. Rodrĺguez Bellido, Stability for nematic liquid crystals with stretching terms,, International Journal of Bifurcations and Chaos, 20 (2010), 2937.  doi: 10.1142/S0218127410027477.  Google Scholar

[4]

B. Climent-Ezquerra and F. Guillén-González, Global in time solutions and time-periodicity for a Smectic-A liquid crystal model,, Communications on Pure and Applied Analysis, 9 (2010), 1473.  doi: 10.3934/cpaa.2010.9.1473.  Google Scholar

[5]

W. E, Nonlinear continuum theory of smectic-A liquid crystals,, Arch. Rat. Mech. Anal., 137 (1997), 159.  doi: 10.1007/s002050050026.  Google Scholar

[6]

M. Grasselli and H. Wu, Long-time behavior for a nematic liquid crystal model with asymptotic stabilizing boundary condition and external force,, preprint., ().   Google Scholar

[7]

F. H. Lin and C. Liu, Non-parabolic dissipative systems modelling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501.  doi: 10.1002/cpa.3160480503.  Google Scholar

[8]

C. Liu, Dynamic Theory for Incompressible Smectic Liquid Crystals: Existence and Regularity,, Discrete and Continuous Dynamical Systems, 6 (2000), 591.  doi: 10.3934/dcds.2000.6.591.  Google Scholar

[9]

A. Segatti and H. Wu, Finite dimensional reduction and convergence to equilibrium for incompressible Smectic-A liquid crystal flows,, preprint, ().   Google Scholar

[10]

H. Wu, Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows,, Discrete and Continuous Dynamical System, 26 (2010), 379.  doi: 10.3934/dcds.2010.26.379.  Google Scholar

[11]

S. Zheng, "Nonlinear Evolution Equations,", Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 133 (2004).   Google Scholar

show all references

References:
[1]

F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional,, Calc. Var. Partial Differential Equations, 1 (1993), 123.  doi: 10.1007/BF01191614.  Google Scholar

[2]

B. Climent-Ezquerra, F. Guillén-González and M. J. Moreno-Iraberte, Regularity and time-periodicity for a nematic liquid crystal model,, Nonlinear Analysis, 71 (2009), 539.   Google Scholar

[3]

B. Climent-Ezquerra, F. Guillén-González and M. A. Rodrĺguez Bellido, Stability for nematic liquid crystals with stretching terms,, International Journal of Bifurcations and Chaos, 20 (2010), 2937.  doi: 10.1142/S0218127410027477.  Google Scholar

[4]

B. Climent-Ezquerra and F. Guillén-González, Global in time solutions and time-periodicity for a Smectic-A liquid crystal model,, Communications on Pure and Applied Analysis, 9 (2010), 1473.  doi: 10.3934/cpaa.2010.9.1473.  Google Scholar

[5]

W. E, Nonlinear continuum theory of smectic-A liquid crystals,, Arch. Rat. Mech. Anal., 137 (1997), 159.  doi: 10.1007/s002050050026.  Google Scholar

[6]

M. Grasselli and H. Wu, Long-time behavior for a nematic liquid crystal model with asymptotic stabilizing boundary condition and external force,, preprint., ().   Google Scholar

[7]

F. H. Lin and C. Liu, Non-parabolic dissipative systems modelling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501.  doi: 10.1002/cpa.3160480503.  Google Scholar

[8]

C. Liu, Dynamic Theory for Incompressible Smectic Liquid Crystals: Existence and Regularity,, Discrete and Continuous Dynamical Systems, 6 (2000), 591.  doi: 10.3934/dcds.2000.6.591.  Google Scholar

[9]

A. Segatti and H. Wu, Finite dimensional reduction and convergence to equilibrium for incompressible Smectic-A liquid crystal flows,, preprint, ().   Google Scholar

[10]

H. Wu, Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows,, Discrete and Continuous Dynamical System, 26 (2010), 379.  doi: 10.3934/dcds.2010.26.379.  Google Scholar

[11]

S. Zheng, "Nonlinear Evolution Equations,", Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 133 (2004).   Google Scholar

[1]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[2]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020289

[3]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[4]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[5]

Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303

[6]

Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020277

[7]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[8]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[9]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[10]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[11]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[12]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435

[13]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[14]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[15]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[16]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[17]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[18]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[19]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020051

[20]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (4)

[Back to Top]